228
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Novel Discriminating Colorectal Cancer Model for Differentiating Normal and Tumor Tissues

, , , , , , & show all
Pages 1463-1475 | Received 26 Apr 2018, Accepted 01 Aug 2018, Published online: 16 Oct 2018

References

  • Ferlay J , SoerjomataramI , DikshitRet al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 . Int. J. Cancer136 ( 5 ), e359 – e386 ( 2015 ).
  • Torre LA , BrayF , SiegelRL , FerlayJ , Lortet-TieulentJ , JemalA . Global cancer statistics, 2012 . CA Cancer J. Clin.65 ( 2 ), 87 – 108 ( 2015 ).
  • Siegel RL , MillerKD , JemalA . Cancer statistics, 2017 . CA Cancer J. Clin.67 ( 1 ), 7 – 30 ( 2017 ).
  • Weber M , DaviesJJ , WittigDet al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells . Nat. Genet.37 ( 8 ), 853 – 862 ( 2005 ).
  • Hassan C , QuinteroE , DumonceauJMet al. Postpolypectomy colonoscopy surveillance: European Society of Gastrointestinal Endoscopy (ESGE) Guideline . Endoscopy45 ( 10 ), 842 – 851 ( 2013 ).
  • Atkin WS , SaundersBP . Surveillance guidelines after removal of colorectal adenomatous polyps . Gut51 ( Suppl. 5 ), V6 – V9 ( 2002 ).
  • Castro I , CubiellaJ , RiveraCet al. Fecal immunochemical test accuracy in familial risk colorectal cancer screening . Int. J. Cancer134 ( 2 ), 367 – 375 ( 2014 ).
  • Kim NH , YangHJ , ParkSKet al. Does low threshold value use improved proximal neoplasia detection by fecal immunochemical test? Dig. Dis. Sci. 61 ( 9 ), 2685 – 2693 ( 2016 ).
  • Rahier JF , DruezA , FaugerasLet al. Circulating nucleosomes as new blood-based biomarkers for detection of colorectal cancer . Clin. Epigenetics9 ( 1 ), 53 ( 2017 ).
  • Adler A , GeigerS , KeilAet al. Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany . BMC Gastroenterol.14 ( 1 ), 183 ( 2014 ).
  • Symonds EL , PedersenS , ColeSRet al. Improving participation in colorectal cancer screening: a randomized controlled trial of sequential offers of fecal then blood-based noninvasive tests . APJCP16 ( 18 ), 8455 – 8460 ( 2015 ).
  • Barault L , AmatuA , SiravegnaGet al. Discovery of methylated circulating DNA biomarkers for comprehensive noninvasive monitoring of treatment response in metastatic colorectal cancer . Gut67 ( 11 ), 1995 – 2005 ( 2018 ).
  • Worm Orntoft MB . Review of blood-based colorectal cancer screening: how far are circulating cell-free DNA methylation markers from clinical implementation?Clin. Colorectal Cancer17 ( 2 ), e415 – e433 ( 2018 ).
  • Castelo-Branco P , ChoufaniS , MackSet al. Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study . Lancet Oncol.14 ( 6 ), 534 – 542 ( 2013 ).
  • Saxonov S , BergP , BrutlagDL . A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters . Proc. Natl Acad. Sci. USA103 ( 5 ), 1412 – 1417 ( 2006 ).
  • Kondo Y , IssaJP . Epigenetic changes in colorectal cancer . Cancer Metastasis Rev.23 ( 1–2 ), 29 – 39 ( 2004 ).
  • Kim YS , DengG . Epigenetic changes (aberrant DNA methylation) in colorectal neoplasia . Gut Liver1 ( 1 ), 1 – 11 ( 2007 ).
  • Schuebel KE , ChenW , CopeLet al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer . PLoS Genet.3 ( 9 ), 1709 – 1723 ( 2007 ).
  • Ng JM , YuJ . Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer . Int. J. Mol. Sci.16 ( 2 ), 2472 – 2496 ( 2015 ).
  • Kim YH , LeeHC , KimSYet al. Epigenomic analysis of aberrantly methylated genes in colorectal cancer identifies genes commonly affected by epigenetic alterations . Ann. Surg. Oncol.18 ( 8 ), 2338 – 2347 ( 2011 ).
  • Mori Y , OlaruAV , ChengYet al. Novel candidate colorectal cancer biomarkers identified by methylation microarray-based scanning . Endocr. Relat. Cancer18 ( 4 ), 465 – 478 ( 2011 ).
  • Van Engeland M , DerksS , SmitsKM , MeijerGA , HermanJG . Colorectal cancer epigenetics: complex simplicity . J. Clin. Oncol.29 ( 10 ), 1382 – 1391 ( 2011 ).
  • Oster B , ThorsenK , LamyPet al. Identification and validation of highly frequent CpG island hypermethylation in colorectal adenomas and carcinomas . Int. J. Cancer129 ( 12 ), 2855 – 2866 ( 2011 ).
  • Narayan G , GoparajuC , Arias-PulidoHet al. Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression . Mol. Cancer5 ( 1 ), 16 ( 2006 ).
  • Karpinski P , MyszkaA , RamseyD , KielanW , SasiadekMM . Detection of viral DNA sequences in sporadic colorectal cancers in relation to CpG island methylation and methylator phenotype . Tumour Biol.32 ( 4 ), 653 – 659 ( 2011 ).
  • Oue N , MitaniY , MotoshitaJet al. Accumulation of DNA methylation is associated with tumor stage in gastric cancer . Cancer106 ( 6 ), 1250 – 1259 ( 2006 ).
  • Bagci B , SariM , KaradayiK , TuranM , OzdemirO , BagciG . KRAS, BRAF oncogene mutations and tissue specific promoter hypermethylation of tumor suppressor SFRP2, DAPK1, MGMT, HIC1 and p16 genes in colorectal cancer patients . Cancer Biomark.17 ( 2 ), 133 – 143 ( 2016 ).
  • Zhang R , KangKA , KimKCet al. Oxidative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells . Gene524 ( 2 ), 214 – 219 ( 2013 ).
  • Nosho K , ShimaK , IraharaNet al. DNMT3B expression might contribute to CpG island methylator phenotype in colorectal cancer . Clin. Cancer Res.15 ( 11 ), 3663 – 3671 ( 2009 ).
  • Kaz AM , WongCJ , DzieciatkowskiS , LuoY , SchoenRE , GradyWM . Patterns of DNA methylation in the normal colon vary by anatomical location, gender and age . Epigenetics9 ( 4 ), 492 – 502 ( 2014 ).
  • Kim JH , BaeJM , ChoNY , KangGH . Distinct features between MLH1-methylated and unmethylated colorectal carcinomas with the CpG island methylator phenotype: implications in the serrated neoplasia pathway . Oncotarget7 ( 12 ), 14095 – 14111 ( 2016 ).
  • Draht MXG , SmitsKM , JoosteVet al. Analysis of RET promoter CpG island methylation using methylation-specific PCR (MSP), pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM): impact on stage II colon cancer patient outcome . Clin. Epigenetics8 ( 1 ), 44 ( 2016 ).
  • Kang HJ , KimEJ , KimBGet al. Quantitative analysis of cancer-associated gene methylation connected to risk factors in Korean colorectal cancer patients . J. Prev. Med. Public Health45 ( 4 ), 251 – 258 ( 2012 ).
  • Park SY , KookMC , KimYWet al. CpG island hypermethylator phenotype in gastric carcinoma and its clinicopathological features . Virchows Arch.457 ( 4 ), 415 – 422 ( 2010 ).
  • Samaei NM , YazdaniY , Alizadeh-NavaeiR , AzadehH , FarazmandfarT . Promoter methylation analysis of WNT/beta-catenin pathway regulators and its association with expression of DNMT1 enzyme in colorectal cancer . J. Biomed. Sci.21 , 73 ( 2014 ).
  • Kotulak A , WronskaA , KobielaJ , GodlewskiJ , StanislawowskiM , WierzbickiP . Decreased expression of p73 in colorectal cancer . Folia Histochem. Cytobiol.54 ( 3 ), 166 – 170 ( 2016 ).
  • Ashktorab H , DaremipouranM , GoelAet al. DNA methylome profiling identifies novel methylated genes in African American patients with colorectal neoplasia . Epigenetics9 ( 4 ), 503 – 512 ( 2014 ).
  • Wilmot B , FryR , SmeesterL , MusserED , MillJ , NiggJT . Methylomic analysis of salivary DNA in childhood ADHD identifies altered DNA methylation in VIPR2 . J. Child Psychol. Psychiatry57 ( 2 ), 152 – 160 ( 2016 ).
  • Masser DR , BergAS , FreemanWM . Focused, high accuracy 5-methylcytosine quantitation with base resolution by benchtop next-generation sequencing . Epigenetics Chromatin6 ( 1 ), 33 ( 2013 ).
  • Tibshiranti R . Regression shrinkage and selection via the LASSO . Royal Statistical Society58 ( No. 1 ), 267 – 288 ( 1996 ).
  • Zhang Z , HongY . Development of a novel score for the prediction of hospital mortality in patients with severe sepsis: the use of electronic healthcare records with LASSO regression . Oncotarget8 ( 30 ), 49637 – 49645 ( 2017 ).
  • Zhang JX , SongW , ChenZHet al. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis . Lancet Oncol.14 ( 13 ), 1295 – 1306 ( 2013 ).
  • Marisa L , De ReyniesA , DuvalAet al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation and prognostic value . PLoS Med.10 ( 5 ), ( 2013 ).
  • Aghagolzadeh P , RadpourR . New trends in molecular and cellular biomarker discovery for colorectal cancer . World J. Gastroenterol.22 ( 25 ), 5678 – 5693 ( 2016 ).
  • Toiyama Y , OkugawaY , GoelA . DNA methylation and microRNA biomarkers for noninvasive detection of gastric and colorectal cancer . Biochem. Biophys. Res. Commun.455 ( 1–2 ), 43 – 57 ( 2014 ).
  • Cesaroni M . Validation of methylation biomarkers that distinguish normal colon mucosa from cancer patients from normal colon mucosa of patients without cancer . Cancer Res.74 ( 19 ), ( 2014 ).
  • Fadda A , GentiliniD , MoiLet al. Colorectal cancer early methylation alterations affect the crosstalk between cell and surrounding environment, tracing a biomarker signature specific for this tumor . Int. J. Cancer143 ( 4 ), 907 – 920 ( 2018 ).
  • Wei JF , LiGD , ZhangJNet al. Integrated analysis of genome-wide DNA methylation and gene expression profiles identifies potential novel biomarkers of rectal cancer . Oncotarget7 ( 38 ), 62547 – 62558 ( 2016 ).
  • Tse JWT , JenkinsLJ , ChionhF , MariadasonJM . Abberant DNA methylation in colorectal cancer: what should we target?Trends Cancer3 ( 10 ), 698 – 712 ( 2017 ).
  • Hinoue T , WeisenbergerDJ , LangeCPEet al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer . Genome Res.22 ( 2 ), 271 – 282 ( 2012 ).
  • Bird A . DNA methylation patterns and epigenetic memory . Genes Dev.16 ( 1 ), 6 – 21 ( 2002 ).
  • Rakyan VK , HildmannT , NovikKLet al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project . PLoS Biol.2 ( 12 ), e405 ( 2004 ).
  • Landau DA , ClementK , ZillerMJet al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia . Cancer Cell26 ( 6 ), 813 – 825 ( 2014 ).
  • Ducray F , MokhtariK , CriniereEet al. Diagnostic and prognostic value of α internexin expression in a series of 409 gliomas . Eur. J. Cancer47 ( 5 ), 802 – 808 ( 2011 ).
  • Ma WJ , ZhouY , LuDet al. Reduced expression of Slit2 in renal cell carcinoma . Med. Oncol.31 ( 1 ), ( 2014 ).
  • Eigenbrod S , RoeberS , ThonNet al. α-internexin in the diagnosis of oligodendroglial tumors and association with 1p/19q status . J. Neuropathol. Exp. Neurol.70 ( 11 ), 970 – 978 ( 2011 ).
  • Cao W , ZhangZY , XuQet al. Epigenetic silencing of MAL, a putative tumor suppressor gene, can contribute to human epithelium cell carcinoma . Mol. Cancer9 ( 1 ), 296 ( 2010 ).
  • Ishimaru S , MimoriK , NagaharaMet al. Suppression of MAL gene expression in gastric cancer correlates with metastasis and mortality . Ann. Surg. Oncol.16 , 67 – 67 ( 2009 ).
  • Paula S . LeeVST , AmyE. Blandet al. Elevated MAL expression is accompanied by promoter hypomethylation and platinum resistance in epithelial ovarian cancer . Int. J. Cancer126 ( 6 ), 1378 – 1389 ( 2010 ).
  • Lin YY , YangCH , SheuGTet al. A novel exon 15-deleted, splicing variant of slit2 shows potential for growth inhibition in addition to invasion inhibition in lung cancer . Cancer117 ( 15 ), 3404 – 3415 ( 2011 ).
  • Kim GE , LeeKH , ChoiYDet al. Detection of Slit2 promoter hypermethylation in tissue and serum samples from breast cancer patients . Virchows Arch.459 ( 4 ), 383 – 390 ( 2011 ).
  • Dong R , YuJ , PuH , ZhangZ , XuX . Frequent SLIT2 promoter methylation in the serum of patients with ovarian cancer . J. Int. Med. Res.40 ( 2 ), 681 – 686 ( 2012 ).
  • Dickinson RE , DallolA , BiecheIet al. Epigenetic inactivation of SLIT3 and SLIT1 genes in human cancers . Br. J. Cancer91 ( 12 ), 2071 – 2078 ( 2004 ).
  • Zhang C , GuoH , LiBet al. Effects of Slit3 silencing on the invasive ability of lung carcinoma A549 cells . Oncol. Rep.34 ( 2 ), 952 – 960 ( 2015 ).
  • Katoh M . Molecular cloning and characterization of human SOX17 . Int. J. Mol. Med.9 ( 2 ), 153 – 157 ( 2002 ).
  • Fu DY , WangZM , ChenLet al. Sox17, the canonical Wnt antagonist, is epigenetically inactivated by promoter methylation in human breast cancer . Breast Cancer Res. Treat.119 ( 3 ), 601 – 612 ( 2010 ).
  • Zhang W , GlocknerSC , GuoMZet al. Epigenetic inactivation of the canonical Wnt antagonist SRY-box-containing gene 17 in colorectal cancer . Cancer Res.68 ( 8 ), 2764 – 2772 ( 2008 ).
  • Kuo IY , WuCC , ChangJMet al. Low SOX17 expression is a prognostic factor and drives transcriptional dysregulation and esophageal cancer progression . Int. J. Cancer135 ( 3 ), 563 – 573 ( 2014 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.