512
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Histone Demethylase Kdm2a Regulates Germ Cell Genes and Endogenous Retroviruses in Embryonic Stem Cells

, , , , , , , , & show all
Pages 751-766 | Received 08 Aug 2018, Accepted 13 Feb 2019, Published online: 07 Jun 2019

References

  • Papp B , PlathK. Epigenetics of reprogramming to induced pluripotency. Cell152(6), 1324–1343 (2013).
  • Boland MJ , NazorKL , LoringJF. Epigenetic regulation of pluripotency and differentiation. Circ. Res.115(2), 311–324 (2014).
  • Chantalat S , DepauxA , HeryPet al. Histone H3 trimethylation at lysine 36 is associated with constitutive and facultative heterochromatin. Genome Res.21(9), 1426–1437 (2011).
  • Mikkelsen TS , KuM , JaffeDBet al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature448(7153), 553–560 (2007).
  • Li B , JacksonJ , SimonMDet al. Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription. J. Biol. Chem.284(12), 7970–7976 (2009).
  • Youdell ML , KizerKO , Kisseleva-RomanovaEet al. Roles for Ctk1 and Spt6 in regulating the different methylation states of histone H3 lysine 36. Mol. Cell Biol.28(16), 4915–4926 (2008).
  • Carrozza MJ , LiB , FlorensLet al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell123(4), 581–592 (2005).
  • Hsia DA , TepperCG , PochampalliMRet al. KDM8, a H3K36me2 histone demethylase that acts in the cyclin A1 coding region to regulate cancer cell proliferation. Proc. Natl Acad. Sci. USA107(21), 9671–9676 (2010).
  • He J , KallinEM , TsukadaY , ZhangY. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat. Struct. Mol. Biol.15(11), 1169–1175 (2008).
  • Tsukada Y , FangJ , Erdjument-BromageHet al. Histone demethylation by a family of JmjC domain-containing proteins. Nature439(7078), 811–816 (2006).
  • Liang G , HeJ , ZhangY. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat. Cell. Biol.14(5), 457–466 (2012).
  • Zhou Z , YangX , HeJet al. Kdm2b regulates somatic reprogramming through variant PRC1 complex-dependent function. Cell Rep.21(8), 2160–2170 (2017).
  • Fukuda T , TokunagaA , SakamotoR , YoshidaN. Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol. Cell Neurosci.46(3), 614–624 (2011).
  • Kawakami E , TokunagaA , OzawaM , SakamotoR , YoshidaN. The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators. Mech. Dev.135, 31–42 (2015).
  • Blackledge NP , ZhouJC , TolstorukovMY , FarcasAM , ParkPJ , KloseRJ. CpG islands recruit a histone H3 lysine 36 demethylase. Mol. Cell38(2), 179–190 (2010).
  • Ran FA , HsuPD , WrightJ , AgarwalaV , ScottDA , ZhangF. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc.8(11), 2281–2308 (2013).
  • Feng B , JiangJ , KrausPet al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat. Cell Biol.11(2), 197–203 (2009).
  • Pertea M , KimD , PerteaGM , LeekJT , SalzbergSL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc.11(9), 1650–1667 (2016).
  • Kim D , LangmeadB , SalzbergSL. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods12(4), 357–360 (2015).
  • Love MI , HuberW , AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15(12), 550 (2014).
  • Huang Da W , ShermanBT , LempickiRA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc.4(1), 44–57 (2009).
  • Liu X , WangC , LiuWet al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature537(7621), 558–562 (2016).
  • Mas G , BlancoE , BallareCet al. Promoter bivalency favors an open chromatin architecture in embryonic stem cells. Nat. Genet.50(10), 1452–1462 (2018).
  • Williams K , ChristensenJ , PedersenMTet al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature473(7347), 343–348 (2011).
  • Chen X , XuH , YuanPet al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell133(6), 1106–1117 (2008).
  • Chang G , GaoS , HouXet al. High-throughput sequencing reveals the disruption of methylation of imprinted gene in induced pluripotent stem cells. Cell Res.24(3), 293–306 (2014).
  • Langmead B , SalzbergSL. Fast gapped-read alignment with Bowtie 2. Nat. Methods9(4), 357–359 (2012).
  • Zhang Y , LiuT , MeyerCAet al. Model-based analysis of ChIP-Seq (MACS). Genome Biol.9(9), R137 (2008).
  • Hayashi K , OhtaH , KurimotoK , AramakiS , SaitouM. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell146(4), 519–532 (2011).
  • Stadler MB , MurrR , BurgerLet al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature480(7378), 490–495 (2011).
  • Wu H , D’alessioAC , ItoSet al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature473(7347), 389–393 (2011).
  • Macfarlan TS , GiffordWD , DriscollSet al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature487(7405), 57–63 (2012).
  • Lu X , SachsF , RamsayLet al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol.21(4), 423–425 (2014).
  • Percharde M , LinCJ , YinYet al. A LINE1–nucleolin partnership regulates early development and ESC identity. Cell174(2), 391–405e319 (2018).
  • Jachowicz JW , BingX , PontabryJ , BoskovicA , RandoOJ , Torres-PadillaME. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat. Genet.49(10), 1502–1510 (2017).
  • Hendrickson PG , DoraisJA , GrowEJet al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet.49(6), 925–934 (2017).
  • De Iaco A , PlanetE , ColuccioA , VerpS , DucJ , TronoD. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat. Genet.49(6), 941–945 (2017).
  • Svoboda P , SteinP , AngerM , BernsteinE , HannonGJ , SchultzRM. RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev. Biol.269(1), 276–285 (2004).
  • Zhang T , CooperS , BrockdorffN. The interplay of histone modifications – writers that read. EMBO Rep.16(11), 1467–1481 (2015).
  • Goke J , NgHH. CTRL+INSERT: retrotransposons and their contribution to regulation and innovation of the transcriptome. EMBO Rep.17(8), 1131–1144 (2016).
  • Ohnuki M , TanabeK , SutouKet al. Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. Proc Natl Acad. Sci. USA111(34), 12426–12431 (2014).
  • Campbell IM , GambinT , DittwaldPet al. Human endogenous retroviral elements promote genome instability via non-allelic homologous recombination. BMC Biol.12, 74 (2014).
  • Whiddon JL , LangfordAT , WongCJ , ZhongJW , TapscottSJ. Conservation and innovation in the DUX4-family gene network. Nat. Genet.49(6), 935–940 (2017).
  • Streubel G , WatsonA , JammulaSGet al. The H3K36me2 methyltransferase Nsd1 demarcates PRC2-mediated H3K27me2 and H3K27me3 domains in embryonic stem cells. Mol. Cell70(2), 371–379 (2018).
  • Ferrari KJ , ScelfoA , JammulaSet al. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol. Cell53(1), 49–62 (2014).
  • Mao H , HanG , XuLet al. Cis-existence of H3K27me3 and H3K36me2 in mouse embryonic stem cells revealed by specific ions of isobaric modification chromatogram. Stem Cell Res. Ther.6, 132 (2015).
  • Karimi MM , GoyalP , MaksakovaIAet al. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell8(6), 676–687 (2011).
  • Di Giacomo M , ComazzettoS , SampathSC , O’CarrollD. G9a co-suppresses LINE1 elements in spermatogonia. Epigenetics Chromatin7, 24 (2014).
  • Leung DC , DongKB , MaksakovaIAet al. Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing. Proc. Natl Acad. Sci. USA108(14), 5718–5723 (2011).
  • Walter M , TeissandierA , Perez-PalaciosR , Bourc’hisD. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. Elife5, e11418 (2016).
  • De La Rica L , DenizO , ChengKCet al. TET-dependent regulation of retrotransposable elements in mouse embryonic stem cells. Genome Biol.17(1), 234 (2016).
  • Kassiotis G . Endogenous retroviruses and the development of cancer. J. Immunol.192(4), 1343–1349 (2014).
  • Wagner KW , AlamH , DharSSet al. KDM2A promotes lung tumorigenesis by epigenetically enhancing ERK1/2 signaling. J. Clin. Invest.123(12), 5231–5246 (2013).
  • Palmer CJ , Galan-CaridadJM , WeisbergSPet al. Zfx facilitates tumorigenesis caused by activation of the Hedgehog pathway. Cancer Res.74(20), 5914–5924 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.