2,440
Views
0
CrossRef citations to date
0
Altmetric
Review

The Function of ncRNAs in Rheumatic Diseases

, , &
Pages 821-833 | Received 22 Aug 2018, Accepted 05 Feb 2019, Published online: 07 Jun 2019

References

  • Coit P , OgnenovskiM , GensterblumE , Maksimowicz-MckinnonK , WrenJD , SawalhaAH. Ethnicity-specific epigenetic variation in naive CD4+ T cells and the susceptibility to autoimmunity. Epigenetics Chromatin8, 49 (2015).
  • Long H , WangX , ChenY , WangL , ZhaoM , LuQ. Dysregulation of microRNAs in autoimmune diseases: pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett.428, 90–103 (2018).
  • Kolarz B , MajdanM. Epigenetic aspects of rheumatoid arthritis: contribution of non-coding RNAs. Semin. Arthritis Rheum.46(6), 724–731 (2017).
  • Lodish HF , ZhouB , LiuG , ChenCZ. Micromanagement of the immune system by microRNAs. Nat. Rev. Immunol.8(2), 120–130 (2008).
  • Neilson JR , ZhengGX , BurgeCB , SharpPA. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev.21(5), 578–589 (2007).
  • Lai NS , KooM , YuCL , LuMC. Immunopathogenesis of systemic lupus erythematosus and rheumatoid arthritis: the role of aberrant expression of non-coding RNAs in T cells. Clin. Exp. Immunol.187(3), 327–336 (2017).
  • Yang C , ShenC , FengT , LiH. Noncoding RNA in NK cells. J. Leukoc. Biol.105 (1), 63–71 (2018).
  • Gomez JA , WapinskiOL , YangYWet al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell152(4), 743–754 (2013).
  • Wang P , XueY , HanYet al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science344(6181), 310–313 (2014).
  • Chew CL , ConosSA , UnalB , TergaonkarV. Noncoding RNAs: master regulators of inflammatory signaling. Trends Mol. Med.24(1), 66–84 (2018).
  • Chen CZ , LiL , LodishHF , BartelDP. MicroRNAs modulate hematopoietic lineage differentiation. Science303(5654), 83–86 (2004).
  • Wu L , BelascoJG. Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol. Cell29(1), 1–7 (2008).
  • Baltimore D , BoldinMP , O’ConnellRM , RaoDS , TaganovKD. MicroRNAs: new regulators of immune cell development and function. Nat. Immunol.9(8), 839–845 (2008).
  • O’Connell RM , RaoDS , ChaudhuriAA , BaltimoreD. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol.10(2), 111–122 (2010).
  • Systemic lupus erythematosus. Nat. Rev. Dis. Primers2, 16040 (2016).
  • Kaul A , GordonC , CrowMKet al. Systemic lupus erythematosus. Nat. Rev. Dis. Primers2, 16039 (2016).
  • Lang KS , BurowA , KurrerM , LangPA , RecherM. The role of the innate immune response in autoimmune disease. J. Autoimmun.29(4), 206–212 (2007).
  • Smith S , FernandoT , WuPWet al. MicroRNA-302d targets IRF9 to regulate the IFN-induced gene expression in SLE. J. Autoimmun.79, 105–111 (2017).
  • Kaga H , KomatsudaA , OmokawaAet al. Downregulated expression of miR-155, miR-17, and miR-181b, and upregulated expression of activation-induced cytidine deaminase and interferon-alpha in PBMCs from patients with SLE. Mod. Rheumatol.25(6), 865–870 (2015).
  • Pan W , ZhuS , YuanMet al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J. Immunol.184(12), 6773–6781 (2010).
  • Zhao S , WangY , LiangYet al. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum.63(5), 1376–1386 (2011).
  • Wang Z , LuQ , WangZ. Epigenetic alterations in cellular immunity: new insights into autoimmune diseases. Cell Physiol. Biochem.41(2), 645–660 (2017).
  • Qin H , ZhuX , LiangJet al. MicroRNA-29b contributes to DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1. J. Dermatol. Sci.69(1), 61–67 (2013).
  • Rasmussen TK , AndersenT , BakROet al. Overexpression of microRNA-155 increases IL-21 mediated STAT3 signaling and IL-21 production in systemic lupus erythematosus. Arthritis Res. Ther.17, 154 (2015).
  • Liu D , ZhangN , ZhangX , QinM , DongY , JinL. MiR-410 down-regulates the expression of interleukin-10 by targeting STAT3 in the pathogenesis of systemic lupus erythematosus. Cell Physiol. Biochem.39(1), 303–315 (2016).
  • Wang Y , LiangJ , QinHet al. Elevated expression of miR-142–3p is related to the pro-inflammatory function of monocyte-derived dendritic cells in SLE. Arthritis Res. Ther.18(1), 263 (2016).
  • Tang Y , LuoX , CuiHet al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum.60(4), 1065–1075 (2009).
  • Navarro-Quiroz E , Pacheco-LugoL , LorenziHet al. High-throughput sequencing reveals circulating miRNAs as potential biomarkers of kidney damage in patients with systemic lupus erythematosus. PLoS ONE11(11), e0166202 (2016).
  • Amr KS , BayoumiFS , ElgengehyFT , AbdallahSO , AhmedHH , EissaE. The role of microRNA-31 and microRNA-21 as regulatory biomarkers in the activation of T lymphocytes of Egyptian lupus patients. Rheumatol. Int.36(11), 1617–1625 (2016).
  • Sole C , Cortes-HernandezJ , FelipML , VidalM , Ordi-RosJ. miR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrol. Dial. Transplant.30(9), 1488–1496 (2015).
  • Perez-Hernandez J , FornerMJ , PintoC , ChavesFJ , CortesR , RedonJ. Increased urinary exosomal microRNAs in patients with systemic lupus erythematosus. PLoS ONE10(9), e0138618 (2015).
  • Liu D , ZhangN , ZhangJ , ZhaoH , WangX. miR-410 suppresses the expression of interleukin-6 as well as renal fibrosis in the pathogenesis of lupus nephritis. Clin. Exp. Pharmacol. Physiol.43(6), 616–625 (2016).
  • Leiss H , SalzbergerW , JacobsBet al. MicroRNA 155-deficiency leads to decreased autoantibody levels and reduced severity of nephritis and pneumonitis in pristane-induced lupus. PLoS ONE12(7), e0181015 (2017).
  • Smolen JS , AletahaD , BartonAet al. Rheumatoid arthritis. Nat. Rev. Dis. Primers4, 18001 (2018).
  • McInnes IB , SchettG. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med.365(323), 2205–2219 (2011).
  • Anaparti V , SmolikI , MengX , SpicerV , MookherjeeN , El-GabalawyH. Whole blood microRNA expression pattern differentiates patients with rheumatoid arthritis, their seropositive first-degree relatives, and healthy unrelated control subjects. Arthritis Res. Ther.19(1), 249 (2017).
  • Nakasa T , MiyakiS , OkuboAet al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum.58(5), 1284–1292 (2008).
  • Stanczyk J , PedrioliDM , BrentanoFet al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum.58(4), 1001–1009 (2008).
  • Kurowska-Stolarska M , AliverniniS , BallantineLEet al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc. Natl Acad. Sci. USA108(27), 11193–11198 (2011).
  • Zhou Q , HauptS , KreuzerJTet al. Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann. Rheum. Dis.74(6), 1265–1274 (2015).
  • Rajasekhar M , OlssonAM , SteelKJet al. MicroRNA-155 contributes to enhanced resistance to apoptosis in monocytes from patients with rheumatoid arthritis. J. Autoimmun.79, 53–62 (2017).
  • Alivernini S , Kurowska-StolarskaM , TolussoBet al. MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis. Nat. Commun.7, 12970 (2016).
  • Peng JS , ChenSY , WuCLet al. Amelioration of experimental autoimmune arthritis through targeting of synovial fibroblasts by intraarticular delivery of microRNAs 140-3p and 140-5p. Arthritis Rheumatol.68(2), 370–381 (2016).
  • Shi DL , ShiGR , XieJ , DuXZ , YangH. MicroRNA-27a inhibits cell migration and invasion of fibroblast-like synoviocytes by targeting follistatin-like protein 1 in rheumatoid arthritis. Mol. Cells39(8), 611–618 (2016).
  • Zhang B , WangLS , ZhouYH. Elevated microRNA-125b promotes inflammation in rheumatoid arthritis by activation of NF-κB pathway. Biomed. Pharmacother.93, 1151–1157 (2017).
  • Lai NS , YuHC , TungCH , HuangKY , HuangHB , LuMC. The role of aberrant expression of T cell miRNAs affected by TNF-α in the immunopathogenesis of rheumatoid arthritis. Arthritis Res. Ther.19(1), 261 (2017).
  • Filkova M , AradiB , SenoltLet al. Association of circulating miR-223 and miR-16 with disease activity in patients with early rheumatoid arthritis. Ann. Rheum. Dis.73(10), 1898–1904 (2014).
  • Duroux-Richard I , PersYM , FabreSet al. Circulating miRNA-125b is a potential biomarker predicting response to rituximab in rheumatoid arthritis. Mediators Inflamm.2014, 342524 (2014).
  • Ouboussad L , HuntL , HensorEMAet al. Profiling microRNAs in individuals at risk of progression to rheumatoid arthritis. Arthritis Res. Ther.19(1), 288 (2017).
  • Hruskova V , JandovaR , VernerovaLet al. MicroRNA-125b: association with disease activity and the treatment response of patients with early rheumatoid arthritis. Arthritis Res. Ther.18(1), 124 (2016).
  • Lundberg IE , DeVisser M , WerthVP. Classification of myositis. Nat. Rev. Rheumatol.14(5), 269–278 (2018).
  • Tang X , TianX , ZhangYet al. Correlation between the frequency of Th17 cell and the expression of microRNA-206 in patients with dermatomyositis. Clin. Dev. Immunol.2013, 345347 (2013).
  • Yin Y , LiF , ShiJ , LiS , CaiJ , JiangY. MiR-146a regulates inflammatory infiltration by macrophages in polymyositis/dermatomyositis by targeting TRAF6 and affecting IL-17/ICAM-1 pathway. Cell Physiol. Biochem.40(3–4), 486–498 (2016).
  • Georgantas RW , StreicherK , GreenbergSAet al. Inhibition of myogenic microRNAs 1, 133, and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies. Arthritis Rheumatol.66(4), 1022–1033 (2014).
  • Parkes JE , DayPJ , ChinoyH , LambJA. The role of microRNAs in the idiopathic inflammatory myopathies. Curr. Opin Rheumatol.27(6), 608–615 (2015).
  • Xu D , HuangCC , KachaochanaAet al. MicroRNA-10a regulation of proinflammatory mediators: an important component of untreated juvenile dermatomyositis. J. Rheumatol.43(1), 161–168 (2016).
  • Misunova M , Salinas-RiesterG , LuthinSet al. Microarray analysis of circulating micro RNAs in the serum of patients with polymyositis and dermatomyositis reveals a distinct disease expression profile and is associated with disease activity. Clin. Exp. Rheumatol.34(1), 17–24 (2016).
  • Hirai T , IkedaK , TsushimaHet al. Circulating plasma microRNA profiling in patients with polymyositis/dermatomyositis before and after treatment: miRNA may be associated with polymyositis/dermatomyositis. Inflamm. Regen.38, 1 (2018).
  • Allanore Y , SimmsR , DistlerOet al. Systemic sclerosis. Nat. Rev. Dis. Primers1, 15002 (2015).
  • Denton CP , KhannaD. Systemic sclerosis. Lancet390(10103), 1685–1699 (2017).
  • Zhu H , LiY , QuSet al. MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J. Clin. Immunol.32(3), 514–522 (2012).
  • Li H , YangR , FanXet al. MicroRNA array analysis of microRNAs related to systemic scleroderma. Rheumatol. Int.32(2), 307–313 (2012).
  • Makino K , JinninM , HiranoAet al. The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma. J. Immunol.190(8), 3905–3915 (2013).
  • Maurer B , StanczykJ , JungelAet al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum.62(6), 1733–1743 (2010).
  • Jafarinejad-Farsangi S , FarazmandA , MahmoudiMet al. MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity48(6), 369–378 (2015).
  • Honda N , JinninM , Kira-EtohTet al. miR-150 down-regulation contributes to the constitutive type I collagen overexpression in scleroderma dermal fibroblasts via the induction of integrin β3. Am. J. Pathol.182(1), 206–216 (2013).
  • Honda N , JinninM , KajiharaIet al. TGF-β-mediated downregulation of microRNA-196a contributes to the constitutive upregulated type I collagen expression in scleroderma dermal fibroblasts. J. Immunol.188(7), 3323–3331 (2012).
  • Nakayama W , JinninM , TomizawaYet al. Dysregulated interleukin-23 signalling contributes to the increased collagen production in scleroderma fibroblasts via balancing microRNA expression. Rheumatology (Oxford)56(1), 145–155 (2017).
  • Wang Z , JinninM , KudoHet al. Detection of hair-microRNAs as the novel potent biomarker: evaluation of the usefulness for the diagnosis of scleroderma. J. Dermatol. Sci.72(2), 134–141 (2013).
  • Takemoto R , JinninM , WangZet al. Hair miR-29a levels are decreased in patients with scleroderma. Exp. Dermatol.22(12), 832–833 (2013).
  • Christmann RB , WootenA , Sampaio-BarrosPet al. miR-155 in the progression of lung fibrosis in systemic sclerosis. Arthritis Res. Ther.18(1), 155 (2016).
  • Artlett CM , Sassi-GahaS , HopeJL , Feghali-BostwickCA , KatsikisPD. Mir-155 is overexpressed in systemic sclerosis fibroblasts and is required for NLRP3 inflammasome-mediated collagen synthesis during fibrosis. Arthritis Res. Ther.19(1), 144 (2017).
  • Steen SO , IversenLV , CarlsenALet al. The circulating cell-free microRNA profile in systemic sclerosis is distinct from both healthy controls and systemic lupus erythematosus. J. Rheumatol.42(2), 214–221 (2015).
  • Wuttge DM , CarlsenAL , TekuGet al. Specific autoantibody profiles and disease subgroups correlate with circulating micro-RNA in systemic sclerosis. Rheumatology (Oxford)54(11), 2100–2107 (2015).
  • Sing T , JinninM , YamaneKet al. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology (Oxford)51(9), 1550–1556 (2012).
  • Zhu H , LuoH , LiYet al. MicroRNA-21 in scleroderma fibrosis and its function in TGF-β-regulated fibrosis-related genes expression. J. Clin. Immunol.33(6), 1100–1109 (2013).
  • Chouri E , ServaasNH , BekkerCPJet al. Serum microRNA screening and functional studies reveal miR-483-5p as a potential driver of fibrosis in systemic sclerosis. J. Autoimmun.89, 162–170 (2018).
  • Tanaka S , SutoA , IkedaKet al. Alteration of circulating miRNAs in SSc: miR-30b regulates the expression of PDGF receptor β. Rheumatology (Oxford)52(11), 1963–1972 (2013).
  • Brito-Zeron P , BaldiniC , BootsmaHet al. Sjogren syndrome. Nat. Rev. Dis. Primers2, 16047 (2016).
  • Singh N , CohenPL. The T cell in Sjogren’s syndrome: force majeure, not spectateur. J. Autoimmun.39(3), 229–233 (2012).
  • Pauley KM , StewartCM , GaunaAEet al. Altered miR-146a expression in Sjogren’s syndrome and its functional role in innate immunity. Eur. J. Immunol.41(7), 2029–2039 (2011).
  • Shi H , ZhengLY , ZhangP , YuCQ. miR-146a and miR-155 expression in PBMCs from patients with Sjogren’s syndrome. J. Oral. Pathol. Med.43(10), 792–797 (2014).
  • Peng L , MaW , YiFet al. MicroRNA profiling in Chinese patients with primary Sjogren syndrome reveals elevated miRNA-181a in peripheral blood mononuclear cells. J. Rheumatol.41(11), 2208–2213 (2014).
  • Wang-Renault SF , BoudaoudS , NocturneGet al. Deregulation of microRNA expression in purified T and B lymphocytes from patients with primary Sjogren’s syndrome. Ann. Rheum. Dis.77(1), 133–140 (2018).
  • Alevizos I , AlexanderS , TurnerRJ , IlleiGG. MicroRNA expression profiles as biomarkers of minor salivary gland inflammation and dysfunction in Sjogren’s syndrome. Arthritis Rheum.63(2), 535–544 (2011).
  • Gourzi VC , KapsogeorgouEK , KyriakidisNC , TzioufasAG. Study of microRNAs (miRNAs) that are predicted to target the autoantigens Ro/SSA and La/SSB in primary Sjogren’s syndrome. Clin. Exp. Immunol.182(1), 14–22 (2015).
  • Quinn JJ , ChangHY. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet.17(1), 47–62 (2016).
  • Mercer Tr DM , MattickJS. Long non-coding RNAs: insights into functions. Nat. Rev. Genet.10(3), 155–159 (2009).
  • Liu W , ZhangQ , ZhangJ , PanW , ZhaoJ , XuY. Long non-coding RNA MALAT1 contributes to cell apoptosis by sponging miR-124 in Parkinson disease. Cell Biosci.7, 19 (2017).
  • Yang H , LiangN , WangMet al. Long noncoding RNA MALAT-1 is a novel inflammatory regulator in human systemic lupus erythematosus. Oncotarget8(44), 77400–77406 (2017).
  • Zhang F , WuL , QianJet al. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J. Autoimmun.75, 96–104 (2016).
  • Enghard P , HumrichJY , RudolphBet al. CXCR3+CD4+ T cells are enriched in inflamed kidneys and urine and provide a new biomarker for acute nephritis flares in systemic lupus erythematosus patients. Arthritis Rheum.60(1), 199–206 (2009).
  • Masutani K , AkahoshiM , TsuruyaKet al. Predominance of Th1 immune response in diffuse proliferative lupus nephritis. Arthritis Rheum.44(9), 2097–2106 (2001).
  • Steinmetz OM , TurnerJE , PaustHJet al. CXCR3 mediates renal Th1 and Th17 immune response in murine lupus nephritis. J. Immunol.183(7), 4693–4704 (2009).
  • Teramoto K , NegoroN , KitamotoKet al. Microarray analysis of glomerular gene expression in murine lupus nephritis. J. Pharmacol. Sci.106(1), 56–67 (2008).
  • Wu Y , ZhangF , MaJet al. Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus. Arthritis Res. Ther.17, 131 (2015).
  • Suarez-Gestal M , CalazaM , EndreffyEet al. Replication of recently identified systemic lupus erythematosus genetic associations: a case-control study. Arthritis Res. Ther.11(3), R69 (2009).
  • Suravajhala P , KogelmanLJ , MazzoniG , KadarmideenHN. Potential role of lncRNA cyp2c91–protein interactions on diseases of the immune system. Front. Genet.6, 255 (2015).
  • Wang J , SyrettCM , KramerMC , BasuA , AtchisonML , AngueraMC. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc. Natl Acad. Sci. USA113(14), E2029–E2038 (2016).
  • Song J , KimD , HanJ , KimY , LeeM , JinEJ. PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin. Exp. Med.15(1), 121–126 (2015).
  • Zhang C , WangP , JiangPet al. Upregulation of lncRNA HOTAIR contributes to IL-1β-induced MMP overexpression and chondrocytes apoptosis in temporomandibular joint osteoarthritis. Gene586(2), 248–253 (2016).
  • Zhang HJ , WeiQF , WangSJet al. LncRNA HOTAIR alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-κB pathway. Int. Immunopharmacol.50, 283–290 (2017).
  • Stuhlmüller B , KunischE , FranzJet al. Detection of oncofetal H19 RNA in rheumatoid arthritis synovial tissue. Am. J. Pathol.163(3), 901–911 (2003).
  • Hayashida T , Eversole-CireP , JonesPA , SasakiH. Imprinted genes are up-regulated by growth arrest in embryonic fibroblasts. J. Biochem.122(5), 901–903 (1997).
  • Spurlock CF 3rd , GassHMT , BryantCJ , WellsBC , OlsenNJ , AuneTM. Methotrexate-mediated inhibition of nuclear factor κB activation by distinct pathways in T cells and fibroblast-like synoviocytes. Rheumatology (Oxford)54(1), 178–187 (2015).
  • Peng QL , ZhangYM , YangHB , ShuXM , LuX , WangGC. Transcriptomic profiling of long non-coding RNAs in dermatomyositis by microarray analysis. Sci. Rep.6, 32818 (2016).
  • Wang Z , JinninM , NakamuraKet al. Long non-coding RNA TSIX is upregulated in scleroderma dermal fibroblasts and controls collagen mRNA stabilization. Exp. Dermatol.25(2), 131–136 (2016).
  • Griseri P , PagesG. Regulation of the mRNA half-life in breast cancer. World J. Clin. Oncol.5(3), 323–334 (2014).
  • Lafyatis R . Transforming growth factor β – at the centre of systemic sclerosis. Nat. Rev. Rheumatol.10(12), 706–719 (2014).
  • Pachera E , AssassiS , SalazarCintora Get al. OP0284 long noncoding RNA MIR503HG is a novel factor in the pathogenesis of systemic sclerosis. Ann. Rheum. Dis.74(S2), 180–181 (2015).
  • Shi H , CaoN , PuY , XieL , ZhengL , YuC. Long non-coding RNA expression profile in minor salivary gland of primary Sjogren’s syndrome. Arthritis Res. Ther.18(1), 109 (2016).
  • Collier SP , HendersonMA , TossbergJT , AuneTM. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. J. Immunol.193(8), 3959–3965 (2014).
  • Salzman J . Circular RNA expression: its potential regulation and function. Trends Genet.32(5), 309–316 (2016).
  • Sanger Hl , KlotzG , RiesnerD , GrossHJ , AkK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl Acad. Sci. USA73(11), 3852–3856 (1976).
  • Petkovic S , MullerS. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res.43(4), 2454–2465 (2015).
  • Rybak-Wolf A , StottmeisterC , GlazarPet al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell58(5), 870–885 (2015).
  • Shan K , LiuC , LiuBH. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation136(17), 1629–1642 (2017).
  • Tang CM , ZhangM , HuangLet al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci. Rep.7, 40342 (2017).
  • Holdt LM , StahringerA , SassKet al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun.7, 12429 (2016).
  • Luan J , JiaoC , KongWet al. CircHLA-C plays an important role in lupus nephritis by sponging miR-150. Mol. Ther. Nucleic Acids10, 245–253 (2018).
  • Ouyang Q , HuangQ , JiangZ , ZhaoJ , ShiGP , YangM. Using plasma circRNA_002453 as a novel biomarker in the diagnosis of lupus nephritis. Mol. Immunol.101, 531–538 (2018).
  • Li LJ , ZhuZW , ZhaoWet al. Circular RNA expression profile and potential function of hsa_circ_0045272 in systemic lupus erythematosus. Immunology155(1), 137–149 (2018).
  • Ouyang Q , WuJ , JiangZet al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol. Biochem.42(2), 651–659 (2017).
  • Luo Q , ZhangL , LiXet al. Identification of circular RNAs hsa_circ_0044235 in peripheral blood as novel biomarkers for rheumatoid arthritis. Clin. Exp. Immunol.194(1), 118–124 (2018).
  • Li B , LiN , ZhangLet al. Hsa_circ_0001859 regulates ATF2 expression by functioning as an MiR-204/211 sponge in human rheumatoid arthritis. J. Immunol. Res.2018, 9412387 (2018).
  • Iwasaki YW , SiomiMC , SiomiH. PIWI-interacting RNA: its biogenesis and functions. Annu. Rev. Biochem.84, 405–433 (2015).
  • Plestilova L , NeidhartM , RussoGet al. Expression and regulation of PIWIL-proteins and PIWI-interacting RNAs in rheumatoid arthritis. PLoS ONE11(11), e0166920 (2016).