11,005
Views
0
CrossRef citations to date
0
Altmetric
Review

BCOR Involvement in Cancer

, , , , &
Pages 835-855 | Received 08 Nov 2018, Accepted 01 Apr 2019, Published online: 31 May 2019

References

  • Huynh KD , FischleW , VerdinE , BardwellVJ. BCOR, a novel corepressor involved in BCL-6 repression. Genes Dev.14(14), 1810–1823 (2000).
  • Blackledge NP , RoseNR , KloseRJ. Targeting polycomb systems to regulate gene expression: modifications to a complex story. Nat. Rev. Mol. Cell Biol.16(11), 643–649 (2015).
  • Junco SE , WangR , GaipaJCet al. Structure of the polycomb group protein PCGF1 in complex with BCOR reveals basis for binding selectivity of PCGF homologs. Structure21(4), 665–671 (2013).
  • Chittock EC , LatwielS , MillerTCR , MüllerCW. Molecular architecture of polycomb repressive complexes. Biochem. Soc. Trans.45(1), 193–205 (2017).
  • Blackledge NP , FarcasAM , KondoTet al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell157(6), 1445–1459 (2014).
  • Schuettengruber B , BourbonH-M , DiCroce L , CavalliG. Genome regulation by polycomb and trithorax: 70 years and counting. Cell171(1), 34–57 (2017).
  • Rose NR , KingHW , BlackledgeNPet al. RYBP stimulates PRC1 to shape chromatin-based communication between polycomb repressive complexes. Elife5, e18591 (2016). ,
  • van den Boom V , MaatH , GeugienMet al. Non-canonical PRC1.1 targets active genes independent of H3K27me3 and is essential for leukemogenesis. Cell Rep.14(2), 332–346 (2016).
  • Béguelin W , TeaterM , GearhartMDet al. EZH2 and BCL6 cooperate to assemble CBX8–BCOR complex to repress bivalent promoters, mediate germinal center formation and lymphomagenesis. Cancer Cell.30(2), 197–213 (2016).
  • Koh DI , ChoiWI , JeonBN , LeeCE , YunCO , HurMW. A novel POK family transcription factor, ZBTB5, represses transcription of p21CIP1 gene. J. Biol. Chem.284(30), 19856–19866 (2009).
  • Lanzuolo C , OrlandoV. Memories from the polycomb group proteins. Annu. Rev. Genet.46(1), 561–589 (2012).
  • Gearhart MD , CorcoranCM , WamstadJA , BardwellVJ. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol. Cell. Biol.26(18), 6880–6889 (2006).
  • Wong SJ , GearhartMD , TaylorABet al. KDM2B recruitment of the polycomb group complex, PRC1.1, requires cooperation between PCGF1 and BCORL1. Structure24(10), 1795–1801 (2016).
  • Gil J , O’LoghlenA. PRC1 complex diversity: where is it taking us?Trends Cell Biol.24(11), 632–641 (2014).
  • Schwartz YB , PirrottaV. A new world of polycombs: unexpected partnerships and emerging functions. Nat. Rev. Genet.14(12), 853–864 (2013).
  • Gao Z , ZhangJ , BonasioRet al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell.45(3), 344–356 (2012).
  • Di Croce L , HelinK. Transcriptional regulation by polycomb group proteins. Nat. Struct. Mol. Biol.20(10), 1147–1155 (2013).
  • Farcas AM , BlackledgeNP , SudberyIet al. KDM2B links the polycomb repressive complex 1 (PRC1) to recognition of CpG islands. Elife1, e00205 (2012).
  • Wang L , BrownJL , CaoR , ZhangY , KassisJA , JonesRS. Hierarchical recruitment of polycomb group silencing complexes. Mol. Cell.14(5), 637–646 (2004).
  • Van der Lugt NM , DomenJ , LindersKet al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the BMI-1 proto-oncogene. Genes Dev.8(7), 757–769 (1994).
  • Akasaka T , KannoM , BallingR , MiezaMA , TaniguchiM , KosekiH. A role for mel-18, a polycomb group-related vertebrate gene, during theanteroposterior specification of the axial skeleton. Development122(5), 1513–1522 (1996).
  • Imagawa E , HigashimotoK , SakaiYet al. Mutations in genes encoding polycomb repressive complex 2 subunits cause Weaver syndrome. Hum. Mutat.38(6), 637–648 (2017).
  • Feberwee HE , FeenstraI , OberoiSet al. Novel BCOR mutations in patients with oculofaciocardiodental (OFCD) syndrome. Clin. Genet.85(2), 194–197 (2014).
  • Ng D , ThakkerN , CorcoranCMet al. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat. Genet.36(4), 411–416 (2004).
  • Hedera P , GorskiJL. Oculo-facio-cardio-dental syndrome: skewed X chromosome inactivation in mother and daughter suggest X-linked dominant inheritance. Am. J. Med. Genet. A123A(3), 261–266 (2003).
  • O’Byrne JJ , LaffanE , MurrayDJ , ReardonW. Oculo-facio-cardio-dental syndrome with craniosynostosis, temporal hypertrichosis, and deafness. Am. J. Med. Genet. Part A173(5), 1374–1377 (2017).
  • Sparmann A , van LohuizenM. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer.6(11), 846–856 (2006).
  • Wamstad JA , CorcoranCM , KeatingAM , BardwellVJ. Role of the transcriptional corepressor BCOR in embryonic stem cell differentiation and early embryonic development. PLoS ONE3(7), e2814 (2008).
  • Wang Z , GearhartMD , LeeY-Wet al. A non-canonical BCOR–PRC1.1 complex represses differentiation programs in human ESCs. Cell Stem Cell.22(2), 235–251.e9 (2018).
  • Gooskens SLM , FurtwänglerR , VujanicGM , DomeJS , GrafN , vanden Heuvel-Eibrink MM. Clear cell sarcoma of the kidney: a review. Eur. J. Cancer.48(14), 2219–2226 (2012).
  • Argani P , PerlmanEJ , BreslowNEet al. Clear cell sarcoma of the kidney: a review of 351 cases from the National Wilms Tumor Study Group Pathology Center. Am. J. Surg. Pathol.24(1), 4–18 (2000).
  • Boo Y-J , FisherJC , HaleyMJ , CowlesRA , KandelJJ , YamashiroDJ. Vascular characterization of clear cell sarcoma of the kidney in a child: a case report and review. J. Pediatr. Surg.44(10), 2031–2036 (2009).
  • Balarezo FS , JoshiVV. Clear cell sarcoma of the pediatric kidney: detailed description and analysis of variant histologic patterns of a tumor with many faces. Adv. Anat. Pathol.8(2), 98–108 (2001).
  • Ueno-Yokohata H , OkitaH , NakasatoKet al. Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney. Nat. Genet.47(8), 861–863 (2015).
  • Astolfi A , MelchiondaF , PerottiDet al. Whole transcriptome sequencing identifies BCOR internal tandem duplication as a common feature of clear cell sarcoma of the kidney. Oncotarget6(38), 40934–40939 (2015).
  • Roy A , KumarV , ZormanBet al. Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney. Nat. Commun.6(1), 8891 (2015).
  • Karlsson J , ValindA , GisselssonD. BCOR internal tandem duplication and YWHAE–NUTM2B/E fusion are mutually exclusive events in clear cell sarcoma of the kidney. Genes Chromosomes Cancer55(2), 120–123 (2016).
  • Kenny C , BausenweinS , LazaroAet al. Mutually exclusive BCOR internal tandem duplications and YWHAE–NUTM2 fusions in clear cell sarcoma of kidney: not the full story. J. Pathol.238(5), 617–620 (2016).
  • Wong MK , NgCCY , KuickCHet al. Clear cell sarcomas of the kidney are characterised by BCOR gene abnormalities, including exon 15 internal tandem duplications and BCOR–CCNB3 gene fusion. Histopathology72(2), 320–329 (2018).
  • Kao Y-C , SungY-S , ZhangLet al. Recurrent BCOR internal tandem duplication and YWHAE–NUTM2B fusions in soft tissue undifferentiated round cell sarcoma of infancy. Am. J. Surg. Pathol.40(8), 1009–1020 (2016).
  • Chiang S , LeeC-H , StewartCJRet al. BCOR is a robust diagnostic immunohistochemical marker of genetically diverse high-grade endometrial stromal sarcoma, including tumors exhibiting variant morphology. Mod. Pathol.30(9), 1251–1261 (2017).
  • Kool M , JonesDTW , JägerNet al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell.25(3), 393–405 (2014).
  • Mirkovic J , CalicchioM , FletcherCD , Perez-AtaydeAR. Diffuse and strong cyclin D1 immunoreactivity in clear cell sarcoma of the kidney. Histopathology67(3), 306–312 (2015).
  • Jet Aw S , HongKuick C , HweeYong Met al. Novel karyotypes and cyclin D1 immunoreactivity in clear cell sarcoma of the kidney. Pediatr. Dev. Pathol.18(4), 297–304 (2015).
  • Antonescu C . Round cell sarcomas beyond Ewing: emerging entities. Histopathology64(1), 26–37 (2014).
  • Pierron G , TirodeF , LucchesiCet al. A new subtype of bone sarcoma defined by BCOR–CCNB3 gene fusion. Nat. Genet.44(4), 461–466 (2012).
  • Cuthbertson DW , CaceresK , HicksJ , FriedmanEM. A cooperative approach to diagnosis of rare diseases: primitive myxoid mesenchymal tumor of infancy. Ann. Clin. Lab. Sci.44(3), 310–316 (2014).
  • Wei S , SiegalGP. Round cell tumors of bone. Adv. Anat. Pathol.21(5), 359–372 (2014).
  • Chang KTE , GoytainA , TuckerTet al. Development and evaluation of a pan-sarcoma fusion gene detection assay using the NanoString nCounter platform. J. Mol. Diagn.20(1), 63–77 (2018).
  • Machado I , YoshidaA , MoralesMGNet al. Review with novel markers facilitates precise categorization of 41 cases of diagnostically challenging, “undifferentiated small round cell tumors”. A clinicopathologic, immunophenotypic and molecular analysis. Ann. Diagn. Pathol.34, 1–12 (2018).
  • Kao Y-C , OwoshoAA , SungY-Set al. BCOR–CCNB3 fusion positive sarcomas: a clinicopathologic and molecular analysis of 36 cases with comparison to morphologic spectrum and clinical behavior of other round cell sarcomas. Am. J. Surg. Pathol.42(5), 604–615 (2018).
  • Santiago T , ClayMR , AllenSJ , OrrBA. Recurrent BCOR internal tandem duplication and BCOR or BCL6 expression distinguish primitive myxoid mesenchymal tumor of infancy from congenital infantile fibrosarcoma. Mod. Pathol.30(6), 884–891 (2017).
  • Yamada Y , KudaM , KohashiKet al. Histological and immunohistochemical characteristics of undifferentiated small round cell sarcomas associated with CIC–DUX4 and BCOR–CCNB3 fusion genes. Virchows Arch.470(4), 373–380 (2017).
  • Machado I , YoshidaA , López-GuerreroJAet al. Immunohistochemical analysis of NKX2.2, ETV4, and BCOR in a large series of genetically confirmed Ewing sarcoma family of tumors. Pathol. Res. Pract.213(9), 1048–1053 (2017).
  • Specht K , ZhangL , SungY-Set al. Novel BCOR–MAML3 and ZC3H7B–BCOR gene fusions in undifferentiated small blue round cell sarcomas. Am. J. Surg. Pathol.40(4), 433–442 (2016).
  • Puls F , NiblettA , MarlandGet al. BCOR–CCNB3 (Ewing-like) sarcoma: a clinicopathologic analysis of 10 cases, in comparison with conventional Ewing sarcoma. Am. J. Surg. Pathol.38(10), 1307–1318 (2014).
  • Ludwig K , AlaggioR , ZinAet al. BCOR–CCNB3 undifferentiated sarcoma – does immunohistochemistry help in the identification? Pediatr. Dev. Pathol. 20(4), 321–329 (2017).
  • Peters TL , KumarV , PolikepahadSet al. BCOR–CCNB3 fusions are frequent in undifferentiated sarcomas of male children. Mod. Pathol.28(4), 575–586 (2015).
  • Li W-S , LiaoI-C , WenM-C , LanHH-C , YuS-C , HuangH-Y. BCOR–CCNB3-positive soft tissue sarcoma with round-cell and spindle-cell histology: a series of four cases highlighting the pitfall of mimicking poorly differentiated synovial sarcoma. Histopathology69(5), 792–801 (2016).
  • Panagopoulos I , ThorsenJ , GorunovaLet al. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer52(7), 610–618 (2013).
  • Cramer SL , MillerAL , PresseyJGet al. Pediatric anaplastic embryonal rhabdomyosarcoma: targeted therapy guided by genetic analysis and a patient-derived xenograft study. Front. Oncol.7, 327 (2017).
  • Mackintosh C . Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J.381(2), 329–342 (2004).
  • Rakheja D , WeinbergAG , TomlinsonGE , PartridgeK , SchneiderNR. Translocation (10;17)(q22;p13): a recurring translocation in clear cell sarcoma of kidney. Cancer Genet. Cytogenet.154(2), 175–179 (2004).
  • French CA , MiyoshiI , KubonishiI , GrierHE , Perez-AtaydeAR , FletcherJA. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res.63(2), 304–307 (2003).
  • Hoang LN , AnejaA , ConlonNet al. Novel high-grade endometrial stromal sarcoma. Am. J. Surg. Pathol.41(1), 12–24 (2017).
  • Knutson SK , WarholicNM , WigleTJet al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc. Natl Acad. Sci. USA110(19), 7922–7927 (2013).
  • Bantignies F , CavalliG. Polycomb group proteins: repression in 3D. Trends Genet.27(11), 454–464 (2011).
  • Kalb R , LatwielS , BaymazHIet al. Histone H2A monoubiquitination promotes histone H3 methylation in polycomb repression. Nat. Struct. Mol. Biol.21(6), 569–571 (2014).
  • Kao Y-C , SungY-S , ZhangLet al. BCOR overexpression is a highly sensitive marker in round cell sarcomas with BCOR genetic abnormalities. Am. J. Surg. Pathol.40(12), 1670–1678 (2016).
  • Mariño-Enriquez A , LauriaA , PrzybylJet al. BCOR internal tandem duplication in high-grade uterine sarcomas. Am. J. Surg. Pathol.42(3), 335–341 (2018).
  • Louis DN , PerryA , ReifenbergerGet al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol.131(6), 803–820 (2016).
  • Hoffman LM , DeWireM , RyallSet al. Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol. Commun.4(1), 1 (2016).
  • Mackay A , BurfordA , CarvalhoDet al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell32(4), 520–537.e5 (2017).
  • Bale TA , AbedalthagafiM , BiWLet al. Genomic characterization of recurrent high-grade astroblastoma. Cancer Genet.209(7–8), 321–330 (2016).
  • Northcott PA , JonesDTW , KoolMet al. Medulloblastomics: the end of the beginning. Nat. Rev. Cancer.12(12), 818–834 (2012).
  • Morrissy AS , GarziaL , ShihDJHet al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature529(7586), 351–357 (2016).
  • Argani P , KaoY-C , ZhangLet al. Primary renal sarcomas with BCOR–CCNB3 gene fusion: a report of 2 cases showing histologic overlap with clear cell sarcoma of kidney, suggesting further link between BCOR-related sarcomas of the kidney and soft tissues. Am. J. Surg. Pathol.41(12), 1702–1712 (2017).
  • Antonescu CR , SungY-S , ChenC-Let al. Novel ZC3H7B–BCOR, MEAF6–PHF1, and EPC1–PHF1 fusions in ossifying fibromyxoid tumors-molecular characterization shows genetic overlap with endometrial stromal sarcoma. Genes Chromosomes Cancer53(2), 183–193 (2014).
  • Wamstad JA , BardwellVJ. Characterization of BCOR expression in mouse development. Gene Expr. Patterns7(5), 550–557 (2007).
  • McEvoy J , NagahawatteP , FinkelsteinDet al. RB1 gene inactivation by chromothripsis in human retinoblastoma. Oncotarget5(2), 438–450 (2014).
  • Zhang J , BenaventeCA , McEvoyJet al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature481(7381), 329–334 (2012).
  • Kooi IE , MolBM , MassinkMPGet al. Somatic genomic alterations in retinoblastoma beyond RB1 are rare and limited to copy number changes. Sci. Rep.6(1), 25264 (2016).
  • Haferlach T , NagataY , GrossmannVet al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia28(2), 241–247 (2014).
  • Cao Q , GearhartMD , GerySet al. BCOR regulates myeloid cell proliferation and differentiation. Leukemia30(5), 1155–1165 (2016).
  • Tanaka T , Nakajima-TakagiY , AoyamaKet al. Internal deletion of BCOR reveals a tumor suppressor function for BCOR in T lymphocyte malignancies. J. Exp. Med.214(10), 2901–2913 (2017).
  • Lefebure M , TothillRW , KruseEet al. Genomic characterisation of Eμ-Myc mouse lymphomas identifies BCOR as a Myc co-operative tumour-suppressor gene. Nat. Commun.8, 14581 (2017).
  • Abáigar M , RobledoC , BenitoRet al. Chromothripsis is a recurrent genomic abnormality in high-risk myelodysplastic syndromes. PLoS ONE11(10), e0164370 (2016).
  • de Rooij JDE , vanden Heuvel-Eibrink MM , HermkensMCHet al. BCOR and BCORL1 mutations in pediatric acute myeloid leukemia. Haematologica100(5), e194–e195 (2015).
  • Terada K , YamaguchiH , UekiTet al. Usefulness of BCOR gene mutation as a prognostic factor in acute myeloid leukemia with intermediate cytogenetic prognosis. Genes Chromosomes Cancer57(8), 401–408 (2018).
  • Olsson L , ZettermarkS , BiloglavAet al. The genetic landscape of paediatric de novo acute myeloid leukaemia as defined by single nucleotide polymorphism array and exon sequencing of 100 candidate genes. Br. J. Haematol.174(2), 292–301 (2016).
  • Yoshida K , SanadaM , ShiraishiYet al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature478(7367), 64–69 (2011).
  • Damm F , ChesnaisV , NagataYet al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood122(18), 3169–3177 (2013).
  • Montalban-Bravo G , TakahashiK , PatelKet al. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Oncotarget9(11), 9714–9727 (2018).
  • Tarlock K , ZhongS , HeYet al. Distinct age-associated molecular profiles in acute myeloid leukemia defined by comprehensive clinical genomic profiling. Oncotarget9(41), 26417–26430 (2018).
  • Thota S , VinyAD , MakishimaHet al. Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood124(11), 1790–1798 (2014).
  • Yamato G , ShibaN , YoshidaKet al. ASXL2 mutations are frequently found in pediatric AML patients with t(8;21)/ RUNX1–RUNX1T1 and associated with a better prognosis. Genes Chromosomes Cancer56(5), 382–393 (2017).
  • Eisfeld A-K , MrózekK , KohlschmidtJet al. The mutational oncoprint of recurrent cytogenetic abnormalities in adult patients with de novo acute myeloid leukemia. Leukemia31(10), 2211–2218 (2017).
  • Bolli N , ManesN , McKerrellTet al. Characterization of gene mutations and copy number changes in acute myeloid leukemia using a rapid target enrichment protocol. Haematologica100(2), 214–222 (2015).
  • Eisfeld A-K , KohlschmidtJ , MrózekKet al. Adult acute myeloid leukemia with trisomy 11 as the sole abnormality is characterized by the presence of five distinct gene mutations: MLL–PTD, DNMT3A, U2AF1, FLT3–ITD and IDH2. Leukemia30(11), 2254–2258 (2016).
  • Herold T , MetzelerKH , VosbergSet al. Isolated trisomy 13 defines a homogeneous AML subgroup with high frequency of mutations in spliceosome genes and poor prognosis. Blood124(8), 1304–1311 (2014).
  • Shiba N , YoshidaK , ShiraishiYet al. Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia. Br. J. Haematol.175(3), 476–489 (2016).
  • Nazha A , ZarzourA , Al-IssaKet al. The complexity of interpreting genomic data in patients with acute myeloid leukemia. Blood Cancer J.6(12), e510 (2016).
  • Metzeler KH , HeroldT , Rothenberg-ThurleyMet al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood128(5), 686–698 (2016).
  • Kihara R , NagataY , KiyoiHet al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia28(8), 1586–1595 (2014).
  • Gaidzik VI , TeleanuV , PapaemmanuilEet al. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia30(11), 2160–2168 (2016).
  • Patel BJ , PrzychodzenB , ThotaSet al. Genomic determinants of chronic myelomonocytic leukemia. Leukemia31(12), 2815–2823 (2017).
  • Grossmann V , TiacciE , HolmesABet al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood118(23), 6153–6163 (2011).
  • Puente XS , BeàS , Valdés-MasRet al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature526(7574), 519–524 (2015).
  • Leeksma AC , TaylorJ , WuBet al. Clonal diversity predicts adverse outcome in chronic lymphocytic leukemia. Leukemia33(2), 390–402 (2019).
  • Ogawa S . Clonal hematopoiesis in acquired aplastic anemia. Blood128(3), 337–347 (2016).
  • Marsh JCW , MuftiGJ. Clinical significance of acquired somatic mutations in aplastic anaemia. Int. J. Hematol.104(2), 159–167 (2016).
  • Kulasekararaj AG , JiangJ , SmithAEet al. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome. Blood124(17), 2698–2704 (2014).
  • Landau DA , CarterSL , StojanovPet al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell152(4), 714–726 (2013).
  • López C , BergmannAK , PaulUet al. Genes encoding members of the JAK–STAT pathway or epigenetic regulators are recurrently mutated in T-cell prolymphocytic leukaemia. Br. J. Haematol.173(2), 265–273 (2016).
  • Stengel A , KernW , ZengerMet al. Genetic characterization of T-PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker. Genes Chromosomes Cancer55(1), 82–94 (2016).
  • Kim J-A , HwangB , ParkSNet al. Genomic profile of chronic lymphocytic leukemia in Korea identified by targeted sequencing. PLoS ONE11(12), e0167641 (2016).
  • Stengel A , KernW , MeggendorferMet al. Number of RUNX1 mutations, wild-type allele loss and additional mutations impact on prognosis in adult RUNX1-mutated AML. Leukemia32(2), 295–302 (2018).
  • Lee S , ParkHY , KangSYet al. Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget6(19), 17764–17776 (2015).
  • Moreira AL , WonHH , McMillanRet al. Massively parallel sequencing identifies recurrent mutations in TP53 in thymic carcinoma associated with poor prognosis. J. Thorac. Oncol.10(2), 373–380 (2015).
  • Morris LGT , ChandramohanR , WestLet al. The molecular landscape of recurrent and metastatic head and neck cancers. JAMA Oncol.3(2), 244 (2017).
  • Petrini I , RajanA , PhamTet al. Whole genome and transcriptome sequencing of a B3 thymoma. PLoS ONE8(4), e60572 (2013).
  • Jallades L , BaseggioL , SujobertPet al. Exome sequencing identifies recurrent BCOR alterations and the absence of KLF2, TNFAIP3 and MYD88 mutations in splenic diffuse red pulp small B-cell lymphoma. Haematologica102(10), 1758–1766 (2017).
  • Dobashi A , TsuyamaN , AsakaRet al. Frequent BCOR aberrations in extranodal NK/T-Cell lymphoma, nasal type. Genes Chromosomes Cancer55(5), 460–471 (2016).
  • Alaggio R , NinfoV , RosolenA , CoffinCM. Primitive myxoid mesenchymal tumor of infancy. Am. J. Surg. Pathol.30(3), 388–394 (2006).
  • Cramer SL , LiR , AliS , BradleyJA , KimHK , PresseyJG. Successful treatment of recurrent primitive myxoid mesenchymal tumor of infancy with BCOR internal tandem duplication. J. Natl. Compr. Cancer Netw.15(7), 868–871 (2017).
  • Watson S , PerrinV , GuillemotDet al. Transcriptomic definition of molecular subgroups of small round cell sarcomas. J. Pathol.245(1), 29–40 (2018).
  • Baldauf MC , OrthMF , DallmayerMet al. Robust diagnosis of Ewing sarcoma by immunohistochemical detection of super-enhancer-driven EWSR1–ETS targets. Oncotarget9(2), 1587–1601 (2018).
  • Matsuyama A , ShibaE , UmekitaYet al. Clinicopathologic diversity of undifferentiated sarcoma with BCOR–CCNB3 fusion: analysis of 11 cases with a reappraisal of the utility of immunohistochemistry for BCOR and CCNB3. Am. J. Surg. Pathol.41(12), 1713–1721 (2017).
  • Machado I , NavarroL , PellinAet al. Defining Ewing and Ewing-like small round cell tumors (SRCT): the need for molecular techniques in their categorization and differential diagnosis. A study of 200 cases. Ann. Diagn. Pathol.22, 25–32 (2016).
  • Vitour D , LindenbaumP , VendeP , BeckerMM , PoncetD. RoXaN, a novel cellular protein containing TPR, LD, and zinc finger motifs, forms a ternary complex with eukaryotic initiation factor 4G and rotavirus NSP3. J. Virol.78(8), 3851–3862 (2004).
  • Shern JF , ChenL , ChmieleckiJet al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov.4(2), 216–231 (2014).
  • Seki M , NishimuraR , YoshidaKet al. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat. Commun.6(1), 7557 (2015).
  • Lee C-H , NucciMR. Endometrial stromal sarcoma – the new genetic paradigm. Histopathology67(1), 1–19 (2015).
  • Micci F , GorunovaL , AgostiniAet al. Cytogenetic and molecular profile of endometrial stromal sarcoma. Genes Chromosomes Cancer55(11), 834–846 (2016).
  • Lee C-H , OuW-B , Marino-EnriquezAet al. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc. Natl Acad. Sci. USA109(3), 929–934 (2012).
  • Punnett HH , HalliganGE , ZaeriN , KarmazinN. Translocation 10;17 in clear cell sarcoma of the kidney. A first report. Cancer Genet. Cytogenet.41(1), 123–128 (1989).
  • O’Meara E , StackD , LeeC-Het al. Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney. J. Pathol.227(1), 72–80 (2012).
  • Brownlee NA , PerkinsLA , StewartWet al. Recurring translocation (10;17) and deletion (14q) in clear cell sarcoma of the kidney. Arch. Pathol. Lab. Med.131(3), 446–451 (2007).
  • Lewis N , SoslowRA , DelairDFet al. ZC3H7B–BCOR high-grade endometrial stromal sarcomas: a report of 17 cases of a newly defined entity. Mod. Pathol.31(4), 674–684 (2018).
  • Sturm D , OrrBA , ToprakUHet al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell164(5), 1060–1072 (2016).
  • Jones DTW , JägerN , KoolMet al. Dissecting the genomic complexity underlying medulloblastoma. Nature488(7409), 100–105 (2012).
  • Pugh TJ , WeeraratneSD , ArcherTCet al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature488(7409), 106–110 (2012).
  • Louis DN , OhgakiH , WiestlerODet al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol.114(2), 97–109 (2007).
  • Yoshida Y , NobusawaS , NakataSet al. CNS high-grade neuroepithelial tumor with BCOR internal tandem duplication: a comparison with its counterparts in the kidney and soft tissue. Brain Pathol.28(5), 710–720 (2018).
  • Cutcliffe C , KerseyD , HuangC-Cet al. Clear cell sarcoma of the kidney: up-regulation of neural markers with activation of the sonic hedgehog and Akt pathways. Clin. Cancer Res.11(22), 7986–7994 (2005).
  • Paret C , TheruvathJ , RussoAet al. Activation of the basal cell carcinoma pathway in a patient with CNS HGNET-BCOR diagnosis: consequences for personalized targeted therapy. Oncotarget7(50), 83378–83391 (2016).
  • Choe J-Y , YunJY , JeonYKet al. Sonic hedgehog signalling proteins are frequently expressed in retinoblastoma and are associated with aggressive clinicopathological features. J. Clin. Pathol.68(1), 6–11 (2015).
  • Kool M , KorshunovA , RemkeMet al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol.123(4), 473–484 (2012).
  • Yan L , PingN , ZhuMet al. Clinical, immunophenotypic, cytogenetic, and molecular genetic features in 117 adult patients with mixed-phenotype acute leukemia defined by WHO-2008 classification. Haematologica97(11), 1708–1712 (2012).
  • Yamamoto Y , TsuzukiS , TsuzukiM , HandaK , InagumaY , EmiN. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood116(20), 4274–4283 (2010).
  • Ichikawa S , IchikawaS , IshikawaI , TakahashiT , FujiwaraT , HarigaeH. Successful treatment of acute promyelocytic leukemia with a t(X;17)(p11.4;q21) and BCOR–RARA fusion gene. Cancer Genet.208(4), 162–163 (2015).
  • Yoshizato T , DumitriuB , HosokawaKet al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N. Engl. J. Med.373(1), 35–47 (2015).
  • Park HS , ParkSN , ImKet al. Telomere length and somatic mutations in correlation with response to immunosuppressive treatment in aplastic anaemia. Br. J. Haematol.178(4), 603–615 (2017).
  • Chahal M , PleasanceE , GrewalJet al. Personalized oncogenomic analysis of metastatic adenoid cystic carcinoma: using whole-genome sequencing to inform clinical decision-making. Mol. Case Stud.4(2), a002626 (2018).
  • García-Sanz P , TriviñoJC , MotaAet al. Chromatin remodelling and DNA repair genes are frequently mutated in endometrioid endometrial carcinoma. Int. J. Cancer.140(7), 1551–1563 (2017).
  • Zhao S , BelloneS , LopezSet al. Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial–mesenchymal transition. Proc. Natl Acad. Sci. USA113(43), 12238–12243 (2016).