135
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Noncoding RNAs Orchestrate Cell Growth, Death and Drug Resistance in Renal Cell Carcinoma

ORCID Icon, ORCID Icon, , , &
Pages 199-219 | Received 04 May 2019, Accepted 18 Nov 2019, Published online: 03 Feb 2020

References

  • Cairns P . Renal cell carcinoma. Cancer Biomark.9, 461–473 (2011).
  • Taheri M , OmraniMD , Ghafouri-FardS. Long non-coding RNAs expression in renal cell carcinoma. J. Biol. Today’s World6, 240–247 (2017).
  • Gerlinger M , HorswellS , LarkinJet al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet.46, 225–233 (2014).
  • Gerlinger M , SwantonC. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br. J. Cancer103, 1139–1143 (2010).
  • Kern SE . Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures. Cancer Res.72, 6097–6101 (2012).
  • Toraih EA , FawzyMS , MohammedEAet al. MicroRNA-196a2 biomarker and targetome network analysis in solid tumors. Mol. Diagn. Ther.20, 559–577 (2016).
  • Liu X , HaoY , YuWet al. Long non-coding RNA emergence during renal cell carcinoma tumorigenesis. Cell Physiol. Biochem.47, 735–746 (2018).
  • Toraih EA , AlghamdiSA , El-WazirAet al. Dual biomarkers long non-coding RNA GAS5 and microRNA-34a co-expression signature in common solid tumors. PLoS ONE13(10), e0198231 (2018).
  • Fawzy MS , EllawindyA , HusseinMHet al. Long non-coding RNA H19, and not microRNA miR-326, is over-expressed and predicts survival in glioblastoma. Biochem. Cell Biol.96, 832–839 (2018).
  • Fawzy MS , ToraihEA , IbrahiemAet al. Evaluation of miRNA-196a2 and apoptosis-related target genes: ANXA1, DFFA and PDCD4 expression in gastrointestinal cancer patients. PLoS ONE12, e0187310 (2017).
  • Toraih EA , AlyNM , AbdallahHYet al. MicroRNA-target cross-talks: key players in glioblastoma multiforme. Tumour Biol.39, 1010428317726842 (2017).
  • Blondeau JJ , DengM , SyringIet al. Identification of novel long non-coding RNAs in clear cell renal cell carcinoma. Clin. Epigenetics7, 10 (2015).
  • Toraih EA , IbrahiemAT , FawzyMSet al. MicroRNA-34a: a key regulator in the hallmarks of renal cell carcinoma. Oxid. Med. Cell Longev.2017, 3269379 (2017).
  • Zhou S , WangJ , ZhangZ. An emerging understanding of long noncoding RNAs in kidney cancer. J. Cancer Res. Clin. Oncol.140(12), 1989–1995 (2014).
  • Vlachos IS , ZagganasK , ParaskevopoulouMDet al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res.43, W1:W460–W466 (2015).
  • Chou C-H , ShresthaS , YangC-Det al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res.46, D296–D302 (2018).
  • Yang Z , WuL , WangAet al. dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res.45, D812–D818 (2017).
  • Kaya KD , KarakulahG , YakicierCM , AcarAC , KonuO. mESAdb: microRNA expression and sequence analysis database. Nucleic Acids Res.39, D170–D180 (2011).
  • Fawzy MS , ToraihEA , HamedEO , HusseinMH , IsmailHM. Association of MIR-499a expression and seed region variant (rs3746444) with cardiovascular disease in Egyptian patients. Acta Cardiol.73(2), 131–140 (2018).
  • Chen G , WangZ , WangDet al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res.41, D983–D986 (2013).
  • Li JH , LiuS , ZhouH , QuLH , YangJH. starBase v2.0: decoding miRNA–ceRNA, miRNA–ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res.42, D92–D97 (2014).
  • Warde-Farley D , DonaldsonSL , ComesOet al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res.38, W214–W220 (2010).
  • Gao J , AksoyBA , DogrusozUet al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science signaling6(269), pl1 (2013).
  • Sato Y , YoshizatoT , ShiraishiYet al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet.45(8), 860–867 (2013).
  • Durinck S , StawiskiEW , Pavía-JiménezAet al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat. Genet.47, 13–21 (2014).
  • Toraih EA , MohammedEA , FarragSet al. Pilot study of serum MicroRNA-21 as a diagnostic and prognostic biomarker in Egyptian breast cancer patients. Mol. Diagn. Ther.19, 179–190 (2015).
  • Fawzy MS , ToraihEA , AbdallahHY. Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1): a molecular predictor of poor survival in glioblastoma multiforme in Egyptian patients. Egypt. J. Medi. Hum. Genet.18(3), 231–239 (2017).
  • Toraih EA , FawzyMS , El-FaloujiAIet al. Stemness-related transcriptional factors and homing gene expression profiles in hepatic differentiation and cancer. Mol Med.22, 653–663 (2016).
  • Bustin SA , BenesV , GarsonJAet al. The MIQE Guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem.55, 611–622 (2009).
  • Faul F , ErdfelderE , LangAG , BuchnerA. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods39, 175–191 (2007).
  • Livak KJ , SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408 (2001).
  • Wang L , CaiY , ZhaoX , JiaX , ZhangJ , LiuJ , ZhenH , WangT , TangX , LiuY , WangJ. Down-regulated long non-coding RNA H19 inhibits carcinogenesis of renal cell carcinoma. Neoplasma62(3), 412–418 (2015).
  • Hirata H , HinodaY , ShahryariVet al. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res.75(7), 1322–1331 (2015).
  • Qiao HP , GaoWS , HuoJX , YangZS. Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac. J. Cancer Prev.14(2), 1077–1082 (2013).
  • Yang N , KaurS , VoliniaSet al. MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res.68(24), 10307–10314 (2008).
  • Li JH , LuoN , ZhongMZet al. Inhibition of microRNA-196a might reverse cisplatin resistance of A549/DDP non-small-cell lung cancer cell line. Tumour Biol.37(2), 2387–2394 (2016).
  • Chen GQ , ZhaoZW , ZhouHY , LiuYJ , YangHJ. Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med Oncol.27(2), 406–15 (2010).
  • Zhang J , WangY , ZhenPet al. Genome-wide analysis of miRNA signature differentially expressed in doxorubicin-resistant and parental human hepatocellular carcinoma cell lines. PLoS ONE8(1), e54111 (2013).
  • Wu XM , ShaoXQ , MengXXet al. Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells. Acta Pharmacol. Sin.32(2), 259–269 (2011).
  • Doyle LA , YangW , RishiAK , GaoY , RossDD. H19 gene overexpression in atypical multidrug-resistant cells associated with expression of a 95-kilodalton membrane glycoprotein. Cancer Res.56(13), 2904–2907 (1996).
  • Tsang WP , KwokTT. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene26(33), 4877–4881 (2007).
  • Kaikkonen MU , AdelmanK. Emerging roles of non-coding RNA transcription. Trends Biochem Sci.43(9), 654–667 (2018).
  • Ragusa M , BarbagalloC , BrexDet al. Molecular crosstalking among noncoding RNAs: a new network layer of genome regulation in cancer. Int. J. Genomics2017, 4723193 (2017).
  • Zhou D , TangW , LiuX , AnHX , ZhangY. Clinical verification of plasma messenger RNA as novel noninvasive biomarker identified through bioinformatics analysis for lung cancer. Oncotarget8, 43978–43989 (2017).
  • Kim B , LeeHJ , ChoiHYet al. Clinical validity of the lung cancer biomarkers identified by bioinformatics analysis of public expression data. Cancer Res.67, 7431–7438 (2007).
  • Jung Y , LeeS , ChoiHSet al. Clinical validation of colorectal cancer biomarkers identified from bioinformatics analysis of public expression data. Clin. Cancer Res.17, 700–709 (2011).
  • Anastasiadou E , JacobLS , SlackFJ. Non-coding RNA networks in cancer. Nat. Rev. Cancer18(1), 5–18 (2017).
  • Braga EA , FridmanMV , LoginovVI , DmitrievAA , MorozovSG. Molecular mechanisms in clear cell renal cell carcinoma: role of miRNAs and hypermethylated miRNA genes in crucial oncogenic pathways and processes. Front. Genet.10, 320 (2019).
  • Fachel AA , TahiraAC , Vilella-AriasSAet al. Expression analysis and in silico characterization of intronic long noncoding RNAs in renal cell carcinoma: emerging functional associations. Mol. Cancer12(1), 140 (2013).
  • Malouf GG , ZhangJ , YuanYet al. Characterization of long non-coding RNA transcriptome in clear-cell renal cell carcinoma by next-generation deep sequencing. Mol. Oncol.9(1), 32–43 (2014).
  • Zhu L , LiuJ , MaS , ZhangS. Long noncoding RNA MALAT-1 can predict metastasis and a poor prognosis: a meta-analysis. Pathol. Oncol. Res.21(4), 1259–1264 (2015).
  • Seles M , HuttererGC , KiesslichTet al. Current Insights into long non-coding RNAs in renal cell carcinoma. Int. J. Mol. Sci.17, 573 (2016).
  • Xing T , HeH. Epigenomics of clear cell renal cell carcinoma: mechanisms and potential use in molecular pathology. Chin. J. Cancer Res.28, 80–91 (2016).
  • Tripathi V , EllisJD , ShenZet al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell.39(6), 925–938 (2010).
  • Tano K , MizunoR , OkadaTet al. MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett.584, 4575–4580 (2010).
  • Choudhry H , SchödelJ , OikonomopoulosSet al. Extensive regulation of the non-coding transcriptome by hypoxia: role of HIF in releasing paused RNApol2. EMBO Rep.15(1), 70–76 (2014).
  • Zhang HM , YangFQ , ChenSJ , CheJ , ZhengJH. Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumour Biol.36, 2947–2955 (2015).
  • Toraih EA , EllawindyA , FalaSYet al. Oncogenic long noncoding RNA MALAT1 and HCV-related hepatocellular carcinoma. Biomed. Pharmacother.102, 653–669 (2018).
  • Li Z , MaZ , XuX. Long non-coding RNA MALAT1 correlates with cell viability and mobility by targeting miR-22-3p in renal cell carcinoma via the PI3K/Akt pathway. Oncol Rep.41, 1113–1121 (2019).
  • Dong X , KongC , LiuXet al. GAS5 functions as a ceRNA to regulate hZIP1 expression by sponging miR-223 in clear cell renal cell carcinoma. Am. J. Cancer Res.8(8), 1414–1426 (2018).
  • Liu L , PangX , ShangW , XieH , FengY , FengG. Long non-coding RNA GAS5 sensitizes renal cell carcinoma to sorafenib via miR-21/SOX5 pathway. Cell Cycle18(3), 257–263 (2019).
  • Jalali S , BhartiyaD , LalwaniMK , SivasubbuS , ScariaV. Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS ONE8, e53823 (2013).
  • Li M , WangY , ChengLet al. Long non-coding RNAs in renal cell carcinoma: a systematic review and clinical implications. Oncotarget8, 48424–48435 (2017).
  • Chan JJ , TayY. Noncoding RNA: RNA regulatory networks in cancer. Int. J. Mol. Sci.19, e1310 (2018).
  • Yin H , WangX , ZhangXet al. Integrated analysis of long noncoding RNA associated-competing endogenous RNA as prognostic biomarkers in clear cell renal carcinoma. Cancer Sci.109, 3336–3349 (2018).
  • Zhu H , LuJ , ZhaoHet al. Functional long noncoding RNAs (lncRNAs) in clear cell kidney carcinoma revealed by reconstruction and comprehensive analysis of the lncRNA-miRNA-mRNA regulatory network. Med. Sci. Monit.24, 8250–8263 (2018).
  • Su Y , WuH , PavloskyAet al. Regulatory non-coding RNA: new instruments in the orchestration of cell death. Cell Death Dis.7(8), e2333 (2016).
  • Salmena L , PolisenoL , TayY , KatsL , PandolfiPP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?Cell146, 353–358 (2011).
  • Mehdi A , RiazalhosseiniY. Epigenome aberrations: emerging driving factors of the clear cell renal cell carcinoma. Int. J. Mol. Sci.18(8), 1774 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.