3,270
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Expression Profiles of Circular RNA in Granulosa Cells from Women with Biochemical Premature Ovarian Insufficiency

, , , , , , , & show all
Pages 319-332 | Received 30 May 2019, Accepted 28 Nov 2019, Published online: 21 Feb 2020

References

  • European Society for Human Reproduction and Embryology (Eshre) Guideline Group on POI , WebberL , DaviesMet al.ESHRE Guideline: management of women with premature ovarian insufficiency. Hum. Reprod.31(5), 926–937 (2016).
  • Haller-Kikkatalo K , UiboR , KurgA , SalumetsA. The prevalence and phenotypic characteristics of spontaneous premature ovarian failure: a general population registry-based study. Hum. Reprod.30(5), 1229–1238 (2015).
  • Roeters Van Lennep JE , HeidaKY , BotsML , HoekA; Collaborators of the Dutch Multidisciplinary, Guideline Development Group on Cardiovascular Risk Management after Reproductive Disorders. Cardiovascular disease risk in women with premature ovarian insufficiency: a systematic review and meta-analysis. Eur. J. Prev. Cardiol.23(2), 178–186 (2016).
  • Asli IN , FallahianM , SeddighHR , JavadiH , BaharfarN , AssadiM. Evaluation of bone mineral density in premature ovarian failure. Hell. J. Nucl. Med.13(3), 261–263 (2010).
  • Bove R , SecorE , ChibnikLBet al. Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology82(3), 222–229 (2014).
  • Wu X , CaiH , KallianpurAet al. Impact of premature ovarian failure on mortality and morbidity among Chinese women. PLoS ONE9(3), e89597 (2014).
  • Welt CK . Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin. Endocrinol.68(4), 499–509 (2008).
  • Nelson LM . Primary ovarian insufficiency. N. Engl. J. Med.360(6), 606–614 (2009).
  • Jiao X , ZhangH , KeHet al. Premature ovarian insufficiency: phenotypic characterization within different etiologies. J. Clin. Endocrinol. Metab.102(7), 2281–2290 (2017).
  • Huang K , DangY , ZhangPet al. CAV1 regulates primordial follicle formation via the Notch2 signalling pathway and is associated with premature ovarian insufficiency in humans. Hum. Reprod.33(11), 2087–2095 (2018).
  • Adhikari D , LiuK. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr. Rev.30(5), 438–464 (2009).
  • Reddy P , LiuL , AdhikariDet al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science319(5863), 611–613 (2008).
  • Krysko DV , Diez-FraileA , CrielG , SvistunovAA , VandenabeeleP , D’herdeK. Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis13(9), 1065–1087 (2008).
  • Dang Y , WangX , HaoYet al. MicroRNA-379-5p is associate with biochemical premature ovarian insufficiency through PARP1 and XRCC6. Cell Death Dis.9(2), 106 (2018).
  • Xu X , ChenX , ZhangXet al. Impaired telomere length and telomerase activity in peripheral blood leukocytes and granulosa cells in patients with biochemical primary ovarian insufficiency. Hum. Reprod.32(1), 201–207 (2017).
  • Jeck WR , SharplessNE. Detecting and characterizing circular RNAs. Nat. Biotechnol.32(5), 453–461 (2014).
  • Li X , YangL , ChenLL. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell71(3), 428–442 (2018).
  • Han D , LiJ , WangHet al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology66(4), 1151–1164 (2017).
  • Du WW , YangW , ChenYet al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur. Heart J.38(18), 1402–1412 (2017).
  • Floris G , ZhangL , FollesaP , SunT. Regulatory role of circular RNAs and neurological disorders. Mol. Neurobiol.54(7), 5156–5165 (2017).
  • Che Q , LiuM , XuJet al. Characterization of circular RNA expression profiles in cumulus cells from patients with polycystic ovary syndrome. Fertil. Steril.111(6), 1243–1251 (2019)
  • Ma Z , ZhaoH , ZhangY , LiuX , HaoC. Novel circular RNA expression in the cumulus cells of patients with polycystic ovary syndrome. Arch. Gynecol. Obstet.299, 1715–1725 (2019).
  • Zhang C , LiuJ , LaiMet al. Circular RNA expression profiling of granulosa cells in women of reproductive age with polycystic ovary syndrome. Arch. Gynecol. Obstet.300(2), 431–440 (2019).
  • Xu X , JiaSZ , DaiYet al. The relationship of circular RNAs with ovarian endometriosis. Reprod. Sci.25(8), 1292–1300 (2018).
  • Zhang M , RenC , XiaoY , XiaX , FangX. Expression profile analysis of circular RNAs in ovarian endometriosis by microarray and bioinformatics. Med. Sci. Monit.24, 9240–9250 (2018).
  • Shen L , ZhangY , ZhouW , PengZ , HongX , ZhangY. Circular RNA expression in ovarian endometriosis. Epigenomics10(5), 559–572 (2018).
  • Zhou X , GuoP , ChenX , YeD , LiuY , ChenS. Comparison of dual trigger with combination GnRH agonist and hCG versus hCG alone trigger of oocyte maturation for normal ovarian responders. Int. J. Gynaecol. Obstet.141(3), 327–331 (2018).
  • Li Y , LiuYD , ChenSLet al. Down-regulation of long non-coding RNA MALAT1 inhibits granulosa cell proliferation in endometriosis by up-regulating P21 via activation of the ERK/MAPK pathway. Mol. Hum. Reprod.25(1), 17–29 (2019).
  • Zhong Y , DuY , YangXet al. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol. Cancer17(1), 79 (2018).
  • Jiao X , KeH , QinY , ChenZJ. Molecular genetics of premature ovarian insufficiency. Trends Endocrinol. Metab.29(11), 795–807 (2018).
  • Huang Y , HuC , YeHet al. Inflamm-aging: a new mechanism affecting premature ovarian insufficiency. J. Immunol. Res.2019, 8069898 (2019).
  • Dang Y , ZhaoS , QinY , HanT , LiW , ChenZJ. MicroRNA-22-3p is down-regulated in the plasma of Han Chinese patients with premature ovarian failure. Fertil. Steril.103(3), 802–807.e801 (2015).
  • Liu YD , LiY , FengSXet al. Long noncoding RNAs: potential regulators involved in the pathogenesis of polycystic ovary syndrome. Endocrinology158(11), 3890–3899 (2017).
  • Hsu M , Coca-PradosM. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature280(5720), 339–340 (1979).
  • Jia W , XuB , WuJ. Circular RNA expression profiles of mouse ovaries during postnatal development and the function of circular RNA epidermal growth factor receptor in granulosa cells. Metabolism85, 192–204 (2018).
  • Cai H , LiY , LiHet al. Identification and characterization of human ovary-derived circular RNAs and their potential roles in ovarian aging. Aging (Albany NY)10(9), 2511–2534 (2018).
  • Cheng J , HuangJ , YuanSet al. Circular RNA expression profiling of human granulosa cells during maternal aging reveals novel transcripts associated with assisted reproductive technology outcomes. PLoS ONE12(6), e0177888 (2017).
  • Zhang XO , WangHB , ZhangY , LuX , ChenLL , YangL. Complementary sequence-mediated exon circularization. Cell159(1), 134–147 (2014).
  • Yang Y , GaoX , ZhangMet al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl Cancer Inst.110(3), 304–315 (2018).
  • Smirin-Yosef P , Zuckerman-LevinN , TzurSet al. A biallelic mutation in the homologous recombination repair gene SPIDR is associated with human gonadal dysgenesis. J. Clin. Endocrinol. Metab.102(2), 681–688 (2017).
  • Pierce SB , GersakK , Michaelson-CohenRet al. Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome. Am. J. Hum. Genet.92(4), 614–620 (2013).
  • Yamagishi R , TsusakaT , MitsunagaH , MaehataT , HoshinoS. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs. Nucleic Acids Res.44(6), 2475–2490 (2016).
  • Rehfeld A , PlassM , KroghA , Friis-HansenL. Alterations in polyadenylation and its implications for endocrine disease. Front. Endocrinol. (Lausanne)4, 53 (2013).
  • Sontakke SD , MohammedBT , McneillyAS , DonadeuFX. Characterization of microRNAs differentially expressed during bovine follicle development. Reproduction148(3), 271–283 (2014).
  • Tang L , ZhaoB , ZhangHet al. Regulation of nonylphenol-induced reproductive toxicity in mouse spermatogonia cells by miR-361-3p. Mol. Reprod. Dev.84(12), 1257–1270 (2017).
  • Ye RS , LiM , LiCYet al. miR-361-3p regulates FSH by targeting FSHB in a porcine anterior pituitary cell model. Reproduction153(3), 341–349 (2017).
  • Wang B , MuY , NiFet al. Analysis of FOXO3 mutation in 114 Chinese women with premature ovarian failure. Reprod. Biomed. Online20(4), 499–503 (2010).
  • Shen M , LiuZ , LiBet al. Involvement of FoxO1 in the effects of follicle-stimulating hormone on inhibition of apoptosis in mouse granulosa cells. Cell Death Dis.5, e1475 (2014).
  • Castrillon DH , MiaoL , KolliparaR , HornerJW , DepinhoRA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science301(5630), 215–218 (2003).
  • Miranda-Furtado CL , LuchiariHR , ChielliPedroso DCet al. Skewed X-chromosome inactivation and shorter telomeres associate with idiopathic premature ovarian insufficiency. Fertil. Steril.110(3), 476–485.e471 (2018).