314
Views
0
CrossRef citations to date
0
Altmetric
Review

Bet Bromodomains’ Functions in Bone-Related Pathologies

, , , , , & ORCID Icon show all
Pages 127-144 | Received 17 Jun 2019, Accepted 18 Nov 2019, Published online: 18 Dec 2019

References

  • Waddington CH . The epigenotype. 1942. Int. J. Epidemiol.41(1), 10–13 (2012).
  • Holliday R . The inheritance of epigenetic defects. Science238(4824), 163–170 (1987).
  • Redon C , PilchD , RogakouE , SedelnikovaO , NewrockK , BonnerW. Histone H2A variants H2AX and H2AZ. Curr. Opin. Genet. Dev.12(2), 162–169 (2002).
  • Biterge B , SchneiderR. Histone variants: key players of chromatin. Cell Tissue Res.356(3), 457–466 (2014).
  • Hargreaves DC , CrabtreeGR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res.21(3), 396–420 (2011).
  • Bannister AJ , KouzaridesT. Regulation of chromatin by histone modifications. Cell Res.21(3), 381–395 (2011).
  • Brownell JE , AllisCD. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev.6(2), 176–184 (1996).
  • Roth SY , DenuJM , AllisCD. Histone acetyltransferases. Annu. Rev. Biochem.70, 81–120 (2001).
  • Mottamal M , ZhengS , HuangTL , WangG. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules20(3), 3898–3941 (2015).
  • Barnes PJ , AdcockIM , ItoK. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur. Respir. J.25(3), 552–563 (2005).
  • Lau OD , KunduTK , SoccioREet al. HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol. Cell5(3), 589–595 (2000).
  • Tamkun JW , DeuringR , ScottMPet al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell68(3), 561–572 (1992).
  • Dhalluin C , CarlsonJE , ZengL , HeC , AggarwalAK , ZhouMM. Structure and ligand of a histone acetyltransferase bromodomain. Nature399(6735), 491–496 (1999).
  • Sanchez R , MeslamaniJ , ZhouMM. The bromodomain: from epigenome reader to druggable target. Biochim. Biophys. Acta1839(8), 676–685 (2014).
  • Owen DJ , OrnaghiP , YangJCet al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J.19(22), 6141–6149 (2000).
  • Charlop-Powers Z , ZengL , ZhangQ , ZhouMM. Structural insights into selective histone H3 recognition by the human polybromo bromodomain 2. Cell Res.20(5), 529–538 (2010).
  • Yang XJ , OgryzkoVV , NishikawaJ , HowardBH , NakataniY. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature382(6589), 319–324 (1996).
  • Gregory GD , VakocCR , RozovskaiaTet al. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol. Cell. Biol.27(24), 8466–8479 (2007).
  • Herquel B , OuararhniK , DavidsonI. The TIF1lpha-related TRIM cofactors couple chromatin modifications to transcriptional regulation, signaling and tumor suppression. Transcription2(5), 231–236 (2011).
  • Sanchez R , ZhouMM. The role of human bromodomains in chromatin biology and gene transcription. Curr. Opin. Drug Discov. Devel.12(5), 659–665 (2009).
  • Schultz J , CopleyRR , DoerksT , PontingCP , BorkP. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res.28(1), 231–234 (2000).
  • Borah JC , MujtabaS , KarakikesIet al. A small molecule binding to the coactivator CREB-binding protein blocks apoptosis in cardiomyocytes. Chem. Biol.18(4), 531–541 (2011).
  • Ferri E , PetosaC , MckennaCE. Bromodomains: structure, function and pharmacology of inhibition. Biochem. Pharmacol.106, 1–18 (2016).
  • Jones MH , NumataM , ShimaneM. Identification and characterization of BRDT: a testis-specific gene related to the bromodomain genes RING3 and Drosophila fsh. Genomics45(3), 529–534 (1997).
  • Ladurner AG , InouyeC , JainR , TjianR. Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol. Cell11(2), 365–376 (2003).
  • Digan ME , HaynesSR , MozerBA , DawidIB , ForquignonF , GansM. Genetic and molecular analysis of fs(1)h, a maternal effect homeotic gene in Drosophila. Dev. Biol.114(1), 161–169 (1986).
  • Gyuris A , DonovanDJ , SeymourKAet al. The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis. Biochim. Biophys. Acta1789(5), 413–421 (2009).
  • Houzelstein D , BullockSL , LynchDE , GrigorievaEF , WilsonVA , BeddingtonRS. Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol. Cell. Biol.22(11), 3794–3802 (2002).
  • Berkovits BD , WolgemuthDJ. The role of the double bromodomain-containing BET genes during mammalian spermatogenesis. Curr. Top. Dev. Biol.102, 293–326 (2013).
  • Lamonica JM , DengW , KadaukeSet al. Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc. Natl Acad. Sci. USA108(22), E159–168 (2011).
  • Moriniere J , RousseauxS , SteuerwaldUet al. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature461(7264), 664–668 (2009).
  • Filippakopoulos P , PicaudS , MangosMet al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell149(1), 214–231 (2012).
  • Nishiyama A , DeyA , MiyazakiJ , OzatoK. Brd4 is required for recovery from antimicrotubule drug-induced mitotic arrest: preservation of acetylated chromatin. Mol. Biol. Cell17(2), 814–823 (2006).
  • Henriques T , GilchristDA , NechaevSet al. Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals. Mol. Cell52(4), 517–528 (2013).
  • Wu SY , LeeAY , LaiHT , ZhangH , ChiangCM. Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Mol. Cell49(5), 843–857 (2013).
  • Garcia-Gutierrez P , MundiM , Garcia-DominguezM. Association of bromodomain BET proteins with chromatin requires dimerization through the conserved motif B. J. Cell Sci.125(Pt 15), 3671–3680 (2012).
  • Rahman S , SowaME , OttingerMet al. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol. Cell. Biol.31(13), 2641–2652 (2011).
  • Bonora G , PlathK , DenholtzM. A mechanistic link between gene regulation and genome architecture in mammalian development. Curr. Opin. Genet. Devel.27, 92–101 (2014).
  • Schweiger MR , YouJ , HowleyPM. Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function. J. Virol.80(9), 4276–4285 (2006).
  • Segura MF , Fontanals-CireraB , Gaziel-SovranAet al. BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy. Cancer Res.73(20), 6264–6276 (2013).
  • French CA , MiyoshiI , KubonishiI , GrierHE , Perez-AtaydeAR , FletcherJA. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res.63(2), 304–307 (2003).
  • Jung M , GelatoKA , Fernandez-MontalvanA , SiegelS , HaendlerB. Targeting BET bromodomains for cancer treatment. Epigenomics7(3), 487–501 (2015).
  • Feng Q , ZhangZ , SheaMJet al. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res.24(7), 809–819 (2014).
  • Asangani IA , DommetiVL , WangXet al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature510(7504), 278–282 (2014).
  • Zou Z , HuangB , WuXet al. Brd4 maintains constitutively active NF-kappaB in cancer cells by binding to acetylated RelA. Oncogene33(18), 2395–2404 (2014).
  • Floyd SR , PacoldME , HuangQet al. The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature498(7453), 246–250 (2013).
  • Shi J , WangY , ZengLet al. Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell25(2), 210–225 (2014).
  • Hussong M , BornoST , KerickMet al. The bromodomain protein BRD4 regulates the KEAP1/NRF2-dependent oxidative stress response. Cell Death Dis.5, e1195 (2014).
  • Andrieu GP , DenisGV. BET proteins exhibit transcriptional and functional opposition in the epithelial-to-mesenchymal transition. Mol. Cancer Res.16(4), 580–586 (2018).
  • Glimcher MJ . The nature of the mineral component of bone and the mechanism of calcification. Instr. Course Lect.36, 49–69 (1987).
  • Ruoslahti E . Integrins. J. Clin. Invest.87(1), 1–5 (1991).
  • Horton MA . Interactions of connective tissue cells with the extracellular matrix. Bone17(Suppl. 2), S51–S53 (1995).
  • Hald JD , FolkestadL , HarslofTet al. Skeletal phenotypes in adult patients with osteogenesis imperfecta-correlations with COL1A1/COL1A2 genotype and collagen structure. Osteoporos. Int. Nov27(11), 3331–3341 (2016).
  • Furthner D , BieblA , WeinzettelRet al. Osteopetrosis due to homozygous chloride channel ClCN7 mutation mimicking metabolic disease with haematological and neurological impairment. Klin. Padiatr.222(3), 180–183 (2010).
  • Mohseny AB , SzuhaiK , RomeoSet al. Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. J. Pathol.219(3), 294–305 (2009).
  • Bernstein M , KovarH , PaulussenMet al. Ewing’s sarcoma family of tumors: current management. Oncologist11(5), 503–519 (2006).
  • Geller DS , GorlickR. Osteosarcoma: a review of diagnosis, management, and treatment strategies. Clin. Adv. Hematol. Oncol.8(10), 705–718 (2010).
  • Marina N , GebhardtM , TeotL , GorlickR. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist9(4), 422–441 (2004).
  • Collins DH . Paget’s disease of bone; incidence and subclinical forms. Lancet271(6933), 51–57 (1956).
  • Wadayama B , ToguchidaJ , ShimizuTet al. Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res.54(11), 3042–3048 (1994).
  • Sandberg AA , BridgeJA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet. Cytogenet.145(1), 1–30 (2003).
  • Chen X , BahramiA , PappoAet al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep.7(1), 104–112 (2014).
  • Mcbride KA , BallingerML , KillickEet al. Li-Fraumeni syndrome: cancer risk assessment and clinical management. Nat. Rev. Clin. Oncol.11(5), 260–271 (2014).
  • Zhang Y , CaiL , WeiRX , HuH , JinW , ZhuXB. Different expression of alternative lengthening of telomere (ALT)-associated proteins/mRNAs in osteosarcoma cell lines. Oncol. Lett.2(6), 1327–1332 (2011).
  • Perry JA , KiezunA , TonziPet al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc. Natl Acad. Sci. USA111(51), E5564–5573 (2014).
  • Savage SA , MirabelloL , WangZet al. Genome-wide association study identifies two susceptibility loci for osteosarcoma. Nat. Genet.45(7), 799–803 (2013).
  • Mirabello L , KosterR , MoriarityBSet al. A genome-wide scan identifies variants in NFIB associated with metastasis in patients with osteosarcoma. Cancer Discov.5(9), 920–931 (2015).
  • Ewing J . Classics in oncology. Diffuse endothelioma of bone. James Ewing. Proceedings of the New York Pathological Society, 1921. CA Cancer J. Clin.22(2), 95–98 (1972).
  • Riggi N , CironiL , ProveroPet al. Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res.65(24), 11459–11468 (2005).
  • Delattre O , ZucmanJ , MelotTet al. The Ewing family of tumors–a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N. Engl. J. Med.331(5), 294–299 (1994).
  • Kim J , PelletierJ. Molecular genetics of chromosome translocations involving EWS and related family members. Physiol. Genomics1(3), 127–138 (1999).
  • Kovar H . Downstream EWS/FLI1 – upstream Ewing’s sarcoma. Genome Med.2(1), 8 (2010).
  • Thompson AD , TeitellMA , ArvandA , DennyCT. Divergent Ewing’s sarcoma EWS/ETS fusions confer a common tumorigenic phenotype on NIH3T3 cells. Oncogene18(40), 5506–5513 (1999).
  • Kauer M , BanJ , KoflerRet al. A molecular function map of Ewing’s sarcoma. PLoS ONE4(4), e5415 (2009).
  • Garcia-Aragoncillo E , CarrilloJ , LalliEet al. DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing’s tumor cells. Oncogene27(46), 6034–6043 (2008).
  • Zwerner JP , JooJ , WarnerKLet al. The EWS/FLI1 oncogenic transcription factor deregulates GLI1. Oncogene27(23), 3282–3291 (2008).
  • Janknecht R . EWS-ETS oncoproteins: the linchpins of Ewing tumors. Gene363, 1–14 (2005).
  • Yang L , HuHM , Zielinska-KwiatkowskaA , ChanskyHA. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing’s sarcoma cells. Biochem. Biophys. Res. Commun.402(1), 129–134 (2010).
  • Mackintosh C , Madoz-GurpideJ , OrdonezJL , OsunaD , Herrero-MartinD. The molecular pathogenesis of Ewing’s sarcoma. Cancer Biol. Ther.9(9), 655–667 (2010).
  • Fuchs B , InwardsCY , JanknechtR. Upregulation of the matrix metal loproteinase-1 gene by the Ewing’s sarcoma associated EWS-ER81 and EWS-Fli-1 oncoproteins, c-Jun and p300. FEBS Lett.553(1-2), 104–108 (2003).
  • Nagano A , OhnoT , ShimizuKet al. EWS/Fli-1 chimeric fusion gene upregulates vascular endothelial growth factor-A. Int. J. Cancer126(12), 2790–2798 (2010).
  • Christensen L , JooJ , LeeS , WaiD , TricheTJ , MayWA. FOXM1 is an oncogenic mediator in Ewing Sarcoma. PLoS ONE8(1), e54556 (2013).
  • Liebner DA . The indications and efficacy of conventional chemotherapy in primary and recurrent sarcoma. J. Surg. Oncol.111(5), 622–631 (2015).
  • European Society for Medical Oncology . Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol.25(Suppl.3), iii113–iii123 (2014).
  • Hu K , LiaoD , WuWet al. Targeting the anaphase-promoting complex/cyclosome (APC/C)- bromodomain containing 7 (BRD7) pathway for human osteosarcoma. Oncotarget5(10), 3088–3100 (2014).
  • Xue Z , ZhaoJ , NiuL , AnG , GuoY , NiL. Up-Regulation of MiR-300 promotes proliferation and invasion of osteosarcoma by targeting BRD7. PLoS ONE10(5), e0127682 (2015).
  • Lamoureux F , Baud’huinM , RodriguezCalleja Let al. Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle. Nat. Commun.5, 3511 (2014).
  • Delmore JE , IssaGC , LemieuxMEet al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell146(6), 904–917 (2011).
  • Rao PH , ZhaoS , ZhaoYJet al. Coamplification of Myc/Pvt1 and homozygous deletion of Nlrp1 locus are frequent genetics changes in mouse osteosarcoma. Genes Chromosomes Cancer.54(12), 796–808 (2015).
  • Baker EK , TaylorS , GupteAet al. BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells. Sci. Rep.5, 10120 (2015).
  • Meng S , ZhangL , TangYet al. BET inhibitor JQ1 blocks inflammation and bone destruction. J. Dent. Res.93(7), 657–662 (2014).
  • Lee DH , QiJ , BradnerJEet al. Synergistic effect of JQ1 and rapamycin for treatment of human osteosarcoma. Int. J. Cancer136(9), 2055–2064 (2015).
  • Zengerle M , ChanKH , CiulliA. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol.10(8), 1770–1777 (2015).
  • Wu VM , MickensJ , UskokovicV. Bisphosphonate-functionalized hydroxyapatite nanoparticles for the delivery of the bromodomain inhibitor JQ1 in the treatment of osteosarcoma. ACS Appl. Mater. Interfaces9(31), 25887–25904 (2017).
  • Lam FC , MortonSW , WyckoffJet al. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat. Commun.9(1), 1991 (2018).
  • Deepak V , WangB , KootDet al. In silico design and bioevaluation of selective benzotriazepine BRD4 inhibitors with potent antiosteoclastogenic activity. Chem. Biol. Drug Des.90(1), 97–111 (2016).
  • Esiashvili N , GoodmanM , MarcusRBJr. Changes in incidence and survival of Ewing sarcoma patients over the past 3 decades: Surveillance Epidemiology and End Results data. J. Pediatr. Hematol. Oncol.30(6), 425–430 (2008).
  • Hensel T , GiorgiC , SchmidtOet al. Targeting the EWS-ETS transcriptional program by BET bromodomain inhibition in Ewing sarcoma. Oncotarget7(2), 1451–1463 (2016).
  • Jacques C , LamoureuxF , Baud’huinMet al. Targeting the epigenetic readers in Ewing sarcoma inhibits the oncogenic transcription factor EWS/Fli1. Oncotarget7(17), 24125–24140 (2016).
  • Loganathan SN , TangN , FlemingJTet al. BET bromodomain inhibitors suppress EWS-FLI1-dependent transcription and the IGF1 autocrine mechanism in Ewing sarcoma. Oncotarget7(28), 43504–43517 (2016).
  • Bid HK , PhelpsDA , XaioLet al. The bromodomain BET Inhibitor JQ1 suppresses tumor angiogenesis in models of childhood sarcoma. Mol. Cancer Ther.15(5), 1018–1028 (2016).
  • Bovee JV , Cleton-JansenAM , TaminiauAH , HogendoornPC. Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment. Lancet. Oncol.6(8), 599–607 (2005).
  • Niu N , ShaoR , YanG , ZouW. Bromodomain and extra-terminal (BET) protein inhibitors suppress chondrocyte differentiation and restrain bone growth. J. Biol. Chem.291(52), 26647–26657 (2016).
  • Zhang HT , GuiT , SangYet al. The BET bromodomain inhibitor JQ1 suppresses chondrosarcoma cell growth via regulation of YAP/p21/c-Myc signaling. J. Cell. Biochem.118(8), 2182–2192 (2017).
  • Zhai Y , LiY , WangYet al. Psoralidin, a prenylated coumestan, as a novel anti-osteoporosis candidate to enhance bone formation of osteoblasts and decrease bone resorption of osteoclasts. Eur. J. Pharmacol.15(801), 62–71 (2017).
  • Gjoksi B , GhayorC , SiegenthalerB , RuangsawasdiN , Zenobi-WongM , WeberFE. The epigenetically active small chemical N-methyl pyrrolidone (NMP) prevents estrogen depletion induced osteoporosis. Bone78, 114–121 (2015).
  • Park-Min KH , LimE , LeeMJet al. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation. Nat. Commun.5, 5418 (2014).
  • Baud’huin M , LamoureuxF , JacquesCet al. Inhibition of BET proteins and epigenetic signaling as a potential treatment for osteoporosis. Bone94, 10–21 (2017).
  • Andrieu G , BelkinaAC , DenisGV. Clinical trials for BET inhibitors run ahead of the science. Drug Discov. Today Technol.19, 45–50 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.