255
Views
2
CrossRef citations to date
0
Altmetric
Review

The Inter-Talk Between Mycobacterium Tuberculosis and the Epigenetic Mechanisms

, , , , , , , & show all
Pages 455-469 | Received 04 Jul 2019, Accepted 24 Jan 2020, Published online: 08 Apr 2020

References

  • Baquero F . Epigenetics, epistasis and epidemics. Evol. Med. Public Health2013(1), 86–88 (2013).
  • Waddington CH . The epigenotype. Int. J. Epidemiol.41(1), 10–13 (2011).
  • De Monerri NCS , KimK. Pathogens hijack the epigenome: a new twist on host-pathogen interactions. Am. J. Pathol.184(4), 897–911 (2014).
  • Yadav V , DwivediV , BhattacharyaD , MittalA , MoodleyP. Understanding the Host Epigenetics in Mycobacterium tuberculosis. J. Infect. Dis.2, 016 (2015).
  • Nicolia V , LucarelliM , FusoAJEG. Environment, epigenetics and neurodegeneration: focus on nutrition in Alzheimer’s disease. Exp. Gerontol.68, 8–12 (2015).
  • Levenson VV , MelnikovAA. DNA methylation as clinically useful biomarkers-light at the end of the tunnel. Pharmaceuticals5(1), 94–113 (2012).
  • Kathirvel M , MahadevanS. The role of epigenetics in tuberculosis infection. Epigenomics8(4), 537–549 (2016).
  • Yang T , OwenJL , LightfootYL , KladdeMP , MohamadzadehM. Microbiota impact on the epigenetic regulation of colorectal cancer. Trends Mol. Med.19(12), 714–725 (2013).
  • Danjuma L , LingMP , HamatRAet al. Genomic plasticity between human and mycobacterial DNA: a review. Tuberculosis107, 38–47 (2017).
  • Hullar MA , FuBC. Diet, the gut microbiome, and epigenetics. Cancer J.20(3), 170 (2014).
  • World Health Organization . Global tuberculosis report 2018. (2018). www.who.int/tb/publications/global_report/en/
  • Chen Y , LinM , WuC , LeungS , FangW , ChangH. Whole genome DNA methylation analysis of active pulmonary tuberculosis disease identifies novel epigenetic signatures. Am. J. Respir. Crit. Care Med.197, 4321 (2018).
  • Tarashi S , BadiSA , MoshiriAet al. The human microbiota in pulmonary tuberculosis: not so innocent bystanders. Tuberculosis113, 215–221 (2018).
  • Pennini ME , PaiRK , SchultzDC , BoomWH , HardingCV. Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-γ-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J. Immunol.176(7), 4323–4330 (2006).
  • Kumar R , HalderP , SahuSKet al. Identification of a novel role of ESAT‐6‐dependent miR‐155 induction during infection of macrophages with Mycobacterium tuberculosis. Cell. Microbiol.14(10), 1620–1631 (2012).
  • Wang Y , CurryHM , ZwillingBS , LafuseWP. Mycobacteria inhibition of IFN-γ induced HLA-DR gene expression by up-regulating histone deacetylation at the promoter region in human THP-1 monocytic cells. J. Immunol.174(9), 5687–5694 (2005).
  • Yaseen I , KaurP , NandicooriVK , KhoslaS. Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat. Commun.6, 8922 (2015).
  • Jose L , RamachandranR , BhagavatRet al. Hypothetical protein Rv3423.1 of Mycobacterium tuberculosis is a histone acetyltransferase. FEBS J.283(2), 265–281 (2016).
  • Sharma G , UpadhyayS , SrilalithaM , NandicooriVK , KhoslaS. The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding. Nucleic Acids Res.43(8), 3922–3937 (2015).
  • Chandran A , AntonyC , JoseL , MundayoorS , NatarajanK , KumarRA. Mycobacterium tuberculosis infection induces HDAC1-mediated suppression of IL-12B gene expression in macrophages. Front. Cell. Infect. Microbiol.5, 90 (2015).
  • Duan L , YiM , ChenJ , LiS , ChenW. Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3. Biochem. Biophys. Res. Commun.473(4), 1229–1234 (2016).
  • Bouttier M , LaperriereD , MemariBet al. Alu repeats as transcriptional regulatory platforms in macrophage responses to M. tuberculosis infection. Nucleic Acids Res.44(22), 10571–10587 (2016).
  • Sengupta S , NazS , DasIet al. Mycobacterium tuberculosis EsxL inhibits MHC-II expression by promoting hypermethylation in class-II transactivator loci in macrophages. J. Biol. Chem.292(17), 6855–6868 (2017).
  • Moores RC , BrilhaS , SchutgensF , ElkingtonPT , FriedlandJS. Epigenetic regulation of matrix metalloproteinase-1 and-3 expression in Mycobacterium tuberculosis infection. Front. Immunol.8, 602 (2017).
  • Singh V , PrakharP , RajmaniRS , MahadikK , BorboraSM , BalajiKN. Histone methyltransferase SET8 epigenetically reprograms host immune responses to assist mycobacterial survival. J. Infect. Dis.216(4), 477–488 (2017).
  • Wang X , WuY , JiaoJ , HuangQ. Mycobacterium tuberculosis infection induces IL-10 gene expression by disturbing histone deacetylase 6 and histonedeacetylase 11 equilibrium in macrophages. Tuberculosis (Edinb)108, 118–123 (2018).
  • Ghosh S , PadmanabhanB , AnandC , NagarajaV. Lysine acetylation of the Mycobacterium tuberculosis HU protein modulates its DNA binding and genome organization. Mol. Microbiol.100(4), 577–588 (2016).
  • Anand C , GargR , GhoshS , NagarajaV. A Sir2 family protein Rv1151c deacetylates HU to alter its DNA binding mode in Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun.493(3), 1204–1209 (2017).
  • Yaseen I , ChoudhuryM , SritharanM , KhoslaS. Histone methyltransferase SUV39H1 participates in host defense by methylating mycobacterial histone-like protein HupB. EMBO J.37(2), 183–200 (2018).
  • Green KD , BiswasT , PangAHet al. Acetylation by Eis and deacetylation by Rv1151c of Mycobacterium tuberculosis HupB: biochemical and structural insight. Biochemistry57(5), 781–790 (2018).
  • Pacis A , TailleuxL , MorinAMet al. Bacterial infection remodels the DNA methylation landscape of human dendritic cells. Genome Res.25(12), 1801–1811 (2015).
  • Zheng L , LeungET , WongHet al. Unraveling methylation changes of host macrophages in Mycobacterium tuberculosis infection. Tuberculosis98, 139–148 (2016).
  • Sharma G , SowpatiDT , SinghPet al. Genome-wide non-CpG methylation of the host genome during M. tuberculosis infection. Sci. Rep.6, 25006 (2016).
  • Wei M , WangL , WuTet al. NLRP3 activation was regulated by DNA methylation modification during Mycobacterium tuberculosis infection. Biomed. Res. Int.2016, 1–10 (2016).
  • Koh H-J , KimY-R , KimJ-Set al. CD82 hypomethylation is essential for tuberculosis pathogenesis via regulation of RUNX1-Rab5/22. Exp. Mol. Med.50(5), 62 (2018).
  • Pacis A , Mailhot-LeonardF , TailleuxLet al. Gene activation precedes DNA demethylation in response to infection in human dendritic cells. Proc. Natl Acad. Sci. USA116(14), 6938–6943 (2019).
  • Andraos C , KoorsenG , KnightJC , BornmanL. Vitamin D receptor gene methylation is associated with ethnicity, tuberculosis, and TaqI polymorphism. Hum. Immunol.72(3), 262–268 (2011).
  • Chen Y-C , HsiaoC-C , ChenC-Jet al. Aberrant Toll-like receptor 2 promoter methylation in blood cells from patients with pulmonary tuberculosis. J. Infect.69(6), 546–557 (2014).
  • He L , GaoL , ShiZet al. Involvement of cytochrome P450 1A1 and glutathione S-transferase P1 polymorphisms and promoter hypermethylation in the progression of anti-tuberculosis drug-induced liver injury: a case–control study. PloS ONE10(3), e0119481 (2015).
  • Esterhuyse MM , WeinerJ , CaronEet al. Epigenetics and proteomics join transcriptomics in the quest for tuberculosis biomarkers. MBio6(5), e01187–e01115 (2015).
  • Zhang J , ZhuX , LiYet al. Correlation of CpG Island methylation of the cytochrome P450 2E1/2D6 genes with liver injury induced by anti-tuberculosis drugs: a nested case–control study. Int. J. Environ. Res. Public Health13(8), 776 (2016).
  • Jiang C , ZhuJ , LiuYet al. The methylation state of VDR gene in pulmonary tuberculosis patients. J. Thorac. Dis.9(11), 4353 (2017).
  • Wang M , KongW , HeBet al. Vitamin D and the promoter methylation of its metabolic pathway genes in association with the risk and prognosis of tuberculosis. Clin. Epigenetics10(1), 118 (2018).
  • Dinardo AR , NishiguchiT , MaceEMet al. Schistosomiasis induces persistent DNA methylation and tuberculosis-specific immune changes. J. Immunol.201(1), 124–133 (2018).
  • Maruthai K , SubramanianM. Methylation status of alu repetitive elements in children with tuberculosis disease. Int. J. Mycobacteriol.7(3), 242 (2018).
  • Maruthai K , KalaiarasanE , JosephNM , ParijaSC , MahadevanS. Assessment of global DNA methylation in children with tuberculosis disease. Int. J. Mycobacteriol.7(4), 338 (2018).
  • Hamon MA , CossartP. Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe4(2), 100–109 (2008).
  • Tremethick DJ . Higher-order structures of chromatin: the elusive 30 nm fiber. Cell128(4), 651–654 (2007).
  • Mohrmann L , VerrijzerCP. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim. Biophys. Acta1681(2–3), 59–73 (2005).
  • Kouzarides T . Chromatin modifications and their function. Cell128(4), 693–705 (2007).
  • Rae W . Indications to epigenetic dysfunction in the pathogenesis of common variable immunodeficiency. Arch. Immunol. Ther. Exp.65(2), 101–110 (2017).
  • Kumar P , AgarwalR , SiddiquiI , VoraH , DasG , SharmaP. ESAT6 differentially inhibits IFN‐γ‐inducible class II transactivator isoforms in both a TLR2‐dependent and‐independent manner. Immunol. Cell Biol.90(4), 411–420 (2012).
  • Dunne PJ , RichardG , KeaneJ. Commercially available, FDA-approved epigenetic modifiers as therapeutic agents in bacterial infection. Antiinflamm. Antiallergy. Drug2(1), 79–88 (2015).
  • Chen Y-C , ChaoT-Y , LeungS-Yet al. Histone H3K14 hypoacetylation and H3K27 hypermethylation along with HDAC1 up-regulation and KDM6B down-regulation are associated with active pulmonary tuberculosis disease. Am. J. Transl. Res.9(4), 1943 (2017).
  • Shilatifard A . Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem.75, 243–269 (2006).
  • Gringhuis SI , DenDunnen J , LitjensM , VanHet Hof B , Van KooykY , GeijtenbeekTB. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity26(5), 605–616 (2007).
  • Sánchez A , EspinosaP , GarcíaT , MancillaR. The 19kDa Mycobacterium tuberculosis lipoprotein (LpqH) induces macrophage apoptosis through extrinsic and intrinsic pathways: a role for the mitochondrial apoptosis-inducing factor. Clin. Dev. Immunol.2012, 950503 (2012).
  • Kim KH , AnDR , SongJet al. Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proc. Natl Acad. Sci. USA109(20), 7729–7734 (2012).
  • Crossman DK . Characterization of a novel acetyltransferase found only in pathogenic strains of Mycobacterium tuberculosis. University of Alabama, Birmingham, Alabama, USA (2007). Google Scholar
  • Moores R , RandL , ElkingtonP , FriedlandJ. Matrix metalloproteinase-1 expression in tuberculosis is regulated by histone acetylation: p2151. Clin. Microbiol. Infect.18, 626–627 (2012).
  • Deaton AM , BirdA. CpG islands and the regulation of transcription. Genes Dev.25(10), 1010–1022 (2011).
  • Zhang G , PradhanS. Mammalian epigenetic mechanisms. IUBMB Life66(4), 240–256 (2014).
  • Fuso AJCC , MedicineL. The ‘golden age’of DNA methylation in neurodegenerative diseases. Clin. Chem. Lab. Med.51(3), 523–534 (2013).
  • Siedlecki P , ZielenkiewiczP. Mammalian DNA methyltransferases. Acta Biochim. Pol.53(2), 245 (2006).
  • Klose RJ , BirdAP. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci.31(2), 89–97 (2006).
  • Illingworth RS , BirdAP. CpG islands–‘a rough guide’. FEBS Lett.583(11), 1713–1720 (2009).
  • Ponnaluri VC , EstèveP-O , RuseCI , PradhanS. S-adenosylhomocysteine hydrolase participates in DNA methylation inheritance. J. Mol. Biol.430(14), 2051–2065 (2018).
  • Sandoval J et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics6(6), 692–702 (2011).
  • Fuso A , FerragutiG , GrandoniFet al. Early demethylation of non-CpG, CpC-rich, elements in the myogenin 5’-flanking region: a priming effect on the spreading of active demethylation? Cell Cycle 9(19), 3965–3976 (2010).
  • Fuso A , ScarpaS , GrandoniF , StromR , LucarelliM. A reassessment of semiquantitative analytical procedures for DNA methylation: comparison of bisulfite-and HpaII polymerase-chain-reaction-based methods. Anal. Biochem.350(1), 24–31 (2006).
  • Warrier T , KapilashramiK , ArgyrouAet al. N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA113(31), E4523–E4530 (2016).
  • Kinney SRM , PradhanS. Regulation of expression and activity of DNA (cytosine-5) methyltransferases in mammalian cells. Prog. Mol. Biol. Transl. Sci.101, 311–333 (2011).
  • Okano M , BellDW , HaberDA , LiE. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99(3), 247–257 (1999).
  • Okano M , XieS , LiEJNG. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet.19(3), 219 (1998).
  • Fuso A , FerragutiG , ScarpaS , FerrerI , LucarelliM. Disclosing bias in bisulfite assay: methPrimers underestimate high DNA methylation. PLoS ONE10(2), e0118318 (2015).
  • Hata K , OkanoM , LeiH , LiE. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development129(8), 1983–1993 (2002).
  • Jeltsch A , Ehrenhofer-MurrayA , JurkowskiTPet al. Mechanism and biological role of Dnmt2 in nucleic acid methylation. Trends Biochem. Sci.14(9), 1108–1123 (2017).
  • Dev RR , GanjiR , SinghSP , MahalingamS , BanerjeeS , KhoslaS. Cytosine methylation by DNMT2 facilitates stability and survival of HIV-1 RNA in the host cell during infection. Biochem. J.474(12), 2009–2026 (2017).
  • Shell SS , PrestwichEG , BaekS-Het al. DNA methylation impacts gene expression and ensures hypoxic survival of Mycobacterium tuberculosis. PLoS. Pathog.9(7), e1003419 (2013).
  • Marimani M , AhmadA , DuseA. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Tuberculosis113, 200–214 (2018).
  • Auwerx J . The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte–macrophage differentiation. Experientia47(1), 22–31 (1991).
  • Pieters J . Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe3(6), 399–407 (2008).
  • Mihret A . The role of dendritic cells in Mycobacterium tuberculosis infection. Virulence3(7), 654–659 (2012).
  • Li C-W , LeeY-L , ChenB-S. Genetic-and-epigenetic interspecies networks for cross-talk mechanisms in human macrophages and dendritic cells during MTB infection. Front. Cell. Infect. Microbiol.6, 124 (2016).
  • Van Der Heijden CD , NozMP , JoostenLA , NeteaMG , RiksenNP , KeatingST. Epigenetics and trained immunity. Antioxid. Redox Signal.29(11), 1023–1040 (2018).
  • Pereira JM , HamonMA , CossartP. A lasting impression: epigenetic memory of bacterial infections?Cell Host Microbe19(5), 579–582 (2016).
  • Sánchez-Romero MA , CotaI , CasadesúsJ. DNA methylation in bacteria: from the methyl group to the methylome. Curr. Opin. Microbiol.25, 9–16 (2015).
  • Malone KM , GordonSV. Antibiotic methylation: a new mechanism of antimicrobial resistance. Trends Microbiol.24(10), 771–772 (2016).
  • Liu Y , LiH , XiaoT , LuQ. Epigenetics in immune-mediated pulmonary diseases. Clin. Rev. Allergy Immunol.45(3), 314–330 (2013).
  • Borchert GM , LanierW , DavidsonBL. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol.13(12), 1097 (2006).
  • Cai X , HagedornCH , CullenBR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA10(12), 1957–1966 (2004).
  • Bentwich I , AvnielA , KarovYet al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet.37(7), 766 (2005).
  • Wang C , YangS , SunGet al. Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PloS ONE6(10), e25832 (2011).
  • Wu Z , LuH , ShengJ , LiL. Inductive microRNA‐21 impairs anti‐mycobacterial responses by targeting IL‐12 and Bcl‐2. FEBS Lett.586(16), 2459–2467 (2012).
  • Ni B , RajaramMV , LafuseWP , LandesMB , SchlesingerLS. Mycobacterium tuberculosis decreases human macrophage IFN-γ responsiveness through miR-132 and miR-26a. J. Immunol.193(9), 4537–4547 (2014).
  • Ma F , XuS , LiuXet al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat. Immunol.12(9), 861 (2011).
  • Singh Y , KaulV , MehraAet al. Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity. J. Biol. Chem.288(7), 5056–5061 (2013).
  • Rajaram MV , NiB , MorrisJDet al. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc. Natl Acad. Sci. USA108(42), 17408–17413 (2011).
  • Liu Y , WangX , JiangJ , CaoZ , YangB , ChengX. Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis. Mol. Immunol.48(9–10), 1084–1090 (2011).
  • Li S , YueY , XuW , XiongS. MicroRNA-146a represses mycobacteria-induced inflammatory response and facilitates bacterial replication via targeting IRAK-1 and TRAF-6. PloS ONE8(12), e81438148 (2013).
  • Yi Z , FuY , JiR , LiR , GuanZ. Altered microRNA signatures in sputum of patients with active pulmonary tuberculosis. PloS ONE7(8), e43184 (2012).
  • Thai T-H , CaladoDP , CasolaSet al. Regulation of the germinal center response by microRNA-155. Science316(5824), 604–608 (2007).
  • Wu J , LuC , DiaoNet al. Analysis of microRNA expression profiling identifies miR-155 and miR-155* as potential diagnostic markers for active tuberculosis: a preliminary study. Hum. Immunol.73(1), 31–37 (2012).
  • Wei J , HuangX , ZhangZet al. MyD88 as a target of microRNA-203 in regulation of lipopolysaccharide or Bacille Calmette-Guerin induced inflammatory response of macrophage RAW264. 7 cells. Cell. Mol. Immunol.55(3–4), 303–309 (2013).
  • Dorhoi A , IannacconeM , FarinacciMet al. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J. Clin. Investig.123(11), 4836–4848 (2013).
  • Spinelli SV , DiazA , D’attilioLet al. Altered microRNA expression levels in mononuclear cells of patients with pulmonary and pleural tuberculosis and their relation with components of the immune response. Cell. Mol. Immunol.53(3), 265–269 (2013).
  • Kumar M , SahuSK , KumarRet al. MicroRNA let-7 modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-κB pathway. Cell Host Microbe17(3), 345–356 (2015).
  • Ueberberg B , KohnsM , MayatepekE , JacobsenM. Are microRNAs suitable biomarkers of immunity to tuberculosis?Mol. Cell. Probes1(1), 8 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.