240
Views
0
CrossRef citations to date
0
Altmetric
Review

Exosomal miRNAs: Novel Players in Viral Infection

, , , , , , , , & ORCID Icon show all
Pages 353-370 | Received 04 Nov 2019, Accepted 06 Jan 2020, Published online: 25 Feb 2020

References

  • Zhang J , LiS , LiLet al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteomics Bioinformatics13(1), 17–24 (2015).
  • Pelchen-Matthews A , RaposoG , MarshM. Endosomes, exosomes and Trojan viruses. Trends Microbiol.12(7), 310–316 (2004).
  • Hu G , DrescherKM , ChenX. Exosomal miRNAs: biological properties and therapeutic potential. Front. Genet.3, 56 (2012).
  • Trobaugh DW , KlimstraWB. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol. Med.23(1), 80–93 (2017).
  • Wang L , LiG , YaoZQ , MoormanJP , NingS. MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV. Rev. Med. Virol.25(5), 320–341 (2015).
  • Su Z , YangZ , XuY , ChenY , YuQ. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget6(11), 8474 (2015).
  • Plaisance-Bonstaff K , RenneR. Viral miRNAs. In: Antiviral RNAi. Springer, 43–66 (2011).
  • Naqvi AR , ShangoJ , SealA , ShuklaD , NaresS. Viral miRNAs alter host cell miRNA profiles and modulate innate immune responses. Front. Immunol.9, 433 (2018).
  • Bhome R , DelVecchio F , LeeG-Het al. Exosomal microRNAs (exomiRs): small molecules with a big role in cancer. Cancer Lett.420, 228–235 (2018).
  • Wiertz EJ , MukherjeeS , PloeghHL. Viruses use stealth technology to escape from the host immune system. Mol. Med. Today3(3), 116–123 (1997).
  • Hilleman MR . Strategies and mechanisms for host and pathogen survival in acute and persistent viral infections. Proc. Natl Acad. Sci. USA101(Suppl. 2), 14560–14566 (2004).
  • Honegger A , SchillingD , BastianSet al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog.11(3), e1004712 (2015).
  • Yogev O , HendersonS , HayesMJet al. Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs. PLoS Pathog.13(8), e1006524 (2017).
  • Crenshaw BJ , SimsB , MatthewsQL. Biological function of exosomes as diagnostic markers and therapeutic delivery vehicles in carcinogenesis and infectious diseases. In: MuhammadAkhyar Farrukh (Ed). Nanomedicines.IntechOpen, London, UK (2018).
  • Yáñez-Mó M , SiljanderPR-M , AndreuZet al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles4(1), 27066 (2015).
  • Raposo G , StoorvogelW. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol.200(4), 373–383 (2013).
  • Février B , RaposoG. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr. Opin. Cell Biol.16(4), 415–421 (2004).
  • Colombo M , MoitaC , Van NielGet al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci.126(24), 5553–5565 (2013).
  • Deng Y , WangCC , ChoyKWet al. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene538(2), 217–227 (2014).
  • Kubowicz P , ZelaszczykD , PekalaE. RNAi in clinical studies. Curr. Med. Chem.20(14), 1801–1816 (2013).
  • Hayes J , PeruzziPP , LawlerS. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med.20(8), 460–469 (2014).
  • Huntzinger E , IzaurraldeE. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet.12(2), 99 (2011).
  • Camilleri ET , GustafsonMP , DudakovicAet al. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Res. Ther.7(1), 107 (2016).
  • Ghaneialvar H , SoltaniL , RahmaniHR , LotfiAS , SoleimaniM. Characterization and classification of mesenchymal stem cells in several species using surface markers for cell therapy purposes. Indian J. Clin. Biochem.33(1), 46–52 (2018).
  • Bashiri H , AmiriF , HosseiniAet al. Dual preconditioning: a novel strategy to withstand mesenchymal stem cells against harsh microenvironments. Adv. Pharm. Bull.8(3), 465 (2018).
  • Hosseini S , TaghiyarL , SafariF , EslaminejadMB. Regenerative medicine applications of mesenchymal stem cells. In: Cell Biology and Translational Medicine, Volume 2. Springer, 115–141 (2018).
  • Rohban R , PieberTR. Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cell. Int.2017, 5173732 (2017).
  • Rodini CO , DaSilva PBG , AssoniAF , CarvalhoVM , OkamotoOK. Mesenchymal stem cells enhance tumorigenic properties of human glioblastoma through independent cell-cell communication mechanisms. Oncotarget9(37), 24766 (2018).
  • Cheng X , ZhangG , ZhangLet al. Mesenchymal stem cells deliver exogenous miR‐21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J. Cell. Mol. Med.22(1), 261–276 (2018).
  • Roushandeh AM , BahadoriM , RoudkenarMH. Mesenchymal stem cell-based therapy as a new horizon for kidney injuries. Arch. Med. Res.48(2), 133–146 (2017).
  • Amiri F , Jahanian-NajafabadiA , RoudkenarMH. In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments. Cell Stress Chaperones20(2), 237–251 (2015).
  • Zhaleh F , AmiriF , Mohammadzadeh-VardinMet al. Nuclear factor erythroid-2 related factor 2 overexpressed mesenchymal stem cells transplantation, improves renal function, decreases injuries markers and increases repair markers in glycerol-induced Acute kidney injury rats. Iran. J. Basic Med. Sci.19(3), 323 (2016).
  • Zhou J , TanX , TanY , LiQ , MaJ , WangG. Mesenchymal stem cell derived exosomes in cancer progression, metastasis and drug delivery: a comprehensive review. J. Cancer9(17), 3129 (2018).
  • Qiu G , ZhengG , GeMet al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res. Ther.9(1), 320 (2018).
  • Yeo RWY , LaiRC , ZhangBet al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv. Drug Delivery Rev.65(3), 336–341 (2013).
  • Nakamura Y , MiyakiS , IshitobiHet al. Mesenchymal‐stem‐cell‐derived exosomes accelerate skeletal muscle regeneration. FEBS Lett.589(11), 1257–1265 (2015).
  • Bai L , ShaoH , WangHet al. Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Sci. Rep.7(1), 4323 (2017).
  • Sun L , LiD , SongKet al. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci. Rep.7(1), 2552 (2017).
  • Pachler K , KetterlN , DesgeorgesAet al. An in vitro potency assay for monitoring the immunomodulatory potential of stromal cell-derived extracellular vesicles. Int. J. Mol. Sci.18(7), 1413 (2017).
  • Chan JA , KrichevskyAM , KosikKS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.65(14), 6029–6033 (2005).
  • Reza-Zaldivar EE , Hernandez-SapiénsMA , MinjarezB , Gutierrez-MercadoYK , Marquez-AguirreAL , Canales-AguirreAA. Potential effects of MSC-derived exosomes in neuroplasticity in Alzheimer’s disease. Front. Cell. Neurosci.12(317) (2018).
  • Xin H , WangF , LiYet al. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant.26(2), 243–257 (2017).
  • Caruso S , PoonIK. Apoptotic cell-derived extracellular vesicles: more than just debris. Front. Immunol.9, 1486 (2018).
  • Xin H , LiY , CuiY , YangJJ , ZhangZG , ChoppM. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab.33(11), 1711–1715 (2013).
  • Janas MM , KhaledM , SchubertSet al. Feed-forward microprocessing and splicing activities at a microRNA–containing intron. PLoS Genet.7(10), e1002330 (2011).
  • Achkar NP , CambiagnoDA , ManavellaPA. miRNA biogenesis: a dynamic pathway. Trends Plant Sci.21(12), 1034–1044 (2016).
  • Siomi H , SiomiMC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol. Cell38(3), 323–332 (2010).
  • Meijer HA , SmithEM , BushellM. Regulation of miRNA strand selection: follow the leader?Biochem. Soc. Trans.42(4), 1135–1140 (2014).
  • Kim VN , HanJ , SiomiMC. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol.10(2), 126 (2009).
  • Okada C , YamashitaE , LeeSJet al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science326(5957), 1275–1279 (2009).
  • He L , HannonGJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet.5(7), 522 (2004).
  • Bang C , BatkaiS , DangwalSet al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest.124(5), 2136–2146 (2014).
  • Koppers-Lalic D , HackenbergM , BijnsdorpIVet al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep.8(6), 1649–1658 (2014).
  • Janas T , JanasMM , SaponK , JanasT. Mechanisms of RNA loading into exosomes. FEBS Lett.589(13), 1391–1398 (2015).
  • Janas T , JanasT. The selection of aptamers specific for membrane molecular targets. Cell Mol. Biol. Lett.16(1), 25–39 (2011).
  • Janas T , JanasT , YarusM. Human tRNA(Sec) associates with HeLa membranes, cell lipid liposomes, and synthetic lipid bilayers. RNA18(12), 2260–2268 (2012).
  • Janas T , YarusM. Visualization of membrane RNAs. RNA9(11), 1353–1361 (2003).
  • Vlassov A , KhvorovaA , YarusM. Binding and disruption of phospholipid bilayers by supramolecular RNA complexes. Proc. Natl Acad. Sci. USA98(14), 7706–7711 (2001).
  • Khvorova A , KwakYG , TamkunM , MajerfeldI , YarusM. RNAs that bind and change the permeability of phospholipid membranes. Proc. Natl Acad. Sci. USA96(19), 10649–10654 (1999).
  • Janas T , JanasT , YarusM. A membrane transporter for tryptophan composed of RNA. RNA10(10), 1541–1549 (2004).
  • Tani M , HannunYA. Neutral sphingomyelinase 2 is palmitoylated on multiple cysteine residues. Role of palmitoylation in subcellular localization. J. Biol. Chem.282(13), 10047–10056 (2007).
  • Wu BX , ClarkeCJ , MatmatiN , MontefuscoD , BartkeN , HannunYA. Identification of novel anionic phospholipid binding domains in neutral sphingomyelinase 2 with selective binding preference. J. Biol. Chem.286(25), 22362–22371 (2011).
  • Rappa G , MercapideJ , AnzanelloF , PopeRM , LoricoA. Biochemical and biological characterization of exosomes containing prominin-1/CD133. Mol. Cancer12(1), 62 (2013).
  • Record M , CarayonK , PoirotM , Silvente-PoirotS. Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochim. Biophys. Acta1841(1), 108–120 (2014).
  • Kajimoto T , OkadaT , MiyaS , ZhangL , NakamuraS-I. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat. Commun.4, 2712 (2013).
  • Gulbins E , KolesnickR. Raft ceramide in molecular medicine. Oncogene22(45), 7070 (2003).
  • Chiantia S , KahyaN , RiesJ , SchwilleP. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys. J.90(12), 4500–4508 (2006).
  • And I , JohnstonLJ. Ceramide promotes restructuring of model raft membranes. Langmuir22(26), 11284–11289 (2006).
  • Nurminen TA , HolopainenJM , ZhaoH , KinnunenPK. Observation of topical catalysis by sphingomyelinase coupled to microspheres. J. Am. Chem. Soc.124(41), 12129–12134 (2002).
  • Trajkovic K , HsuC , ChiantiaSet al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science319(5867), 1244–1247 (2008).
  • Kosaka N , IguchiH , YoshiokaY , TakeshitaF , MatsukiY , OchiyaT. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem.285(23), 17442–17452 (2010).
  • Llorente A , SkotlandT , SylvänneTet al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta1831(7), 1302–1309 (2013).
  • Balestrieri B , HsuVW , GilbertHet al. Group V secretory phospholipase A2 translocates to the phagosome after zymosan stimulation of mouse peritoneal macrophages and regulates phagocytosis. J. Biol. Chem.281(10), 6691–6698 (2006).
  • Prinetti A , ChigornoV , PrioniSet al. Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J. Biol. Chem.276(24), 21136–21145 (2001).
  • Sonnino S , PrinettiA , MauriL , ChigornoV , TettamantiG. Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem. Rev.106(6), 2111–2125 (2006).
  • De Gassart A , GéminardC , FévrierB , RaposoG , VidalM. Lipid raft-associated protein sorting in exosomes. Blood102(13), 4336–4344 (2003).
  • Gibbings DJ , CiaudoC , ErhardtM , VoinnetO. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol.11(9), 1143 (2009).
  • Hullin-Matsuda F , TaguchiT , GreimelP , KobayashiT. Lipid compartmentalization in the endosome system. Presented at: Seminars in Cell & Developmental Biology31, 48–56 (2014).
  • Janas T , JanasT , YarusM. Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res.34(7), 2128–2136 (2006).
  • Carayon K , ChaouiK , RonzierEet al. Proteolipidic composition of exosomes changes during reticulocyte maturation. J. Biol. Chem.286(39), 34426–34439 (2011).
  • Batagov AO , KurochkinIV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3’-untranslated regions. Biol. Direct8, 12 (2013).
  • Kajimoto T , OkadaT , MiyaS , ZhangL , NakamuraS. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat. Commun.4, 2712 (2013).
  • Batagov AO , KuznetsovVA , KurochkinIV. Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genom.12(Suppl. 3), S18 (2011).
  • Villarroya-Beltri C , Gutierrez-VazquezC , Sanchez-CaboFet al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun.4, 2980 (2013).
  • Janas T , JanasT , YarusM. Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res.34(7), 2128–2136 (2006).
  • Janas MM , WangB , HarrisASet al. Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human Ago proteins. RNA18(11), 2041–2055 (2012).
  • Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell136(2), 215–233 (2009).
  • Guarnieri DJ , DileoneRJ. MicroRNAs: a new class of gene regulators. Ann. Med.40(3), 197–208 (2008).
  • Stoorvogel W . Functional transfer of microRNA by exosomes. Blood119(3), 646–648 (2012).
  • Boon RA , VickersKC. Intercellular transport of microRNAs. Arterioscler. Thromb. Vasc. Biol.33(2), 186–192 (2013).
  • Maemura T , FukuyamaS , SugitaYet al. Lung-derived exosomal miR-483-3p regulates the innate immune response to influenza virus infection. J. Infect. Dis.217(9), 1372–1382 (2018).
  • Kim JH , LeeCH , LeeS-W. Exosomal transmission of microRNA from HCV replicating cells stimulates transdifferentiation in hepatic stellate cells. Mol. Ther. Nucleic Acids14, 483–497 (2019).
  • Chiantore MV , ManginoG , IulianoMet al. Human papillomavirus E6 and E7 oncoproteins affect the expression of cancer-related microRNAs: additional evidence in HPV-induced tumorigenesis. J. Cancer Res. Clin. Oncol.142(8), 1751–1763 (2016).
  • Yoon C , KimJ , ParkGet al. Delivery of miR-155 to retinal pigment epithelial cells mediated by Burkitt’s lymphoma exosomes. Tumor Biol.37(1), 313–321 (2016).
  • Gallo A , VellaS , MieleMet al. Global profiling of viral and cellular non-coding RNAs in Epstein–Barr virus-induced lymphoblastoid cell lines and released exosome cargos. Cancer Lett.388, 334–343 (2017).
  • Roth W , HuangM , AddaeKonadu K , PowellM , BondV. Micro RNA in exosomes from HIV-infected macrophages. Int. J. Environ. Res. Public Health13(1), 32 (2016).
  • Fu Y , ZhangL , ZhangFet al. 293tExosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection. PLoS Pathog.13(9), e1006611 (2017).
  • Han Z , LiuX , ChenXet al. miR-H28 and miR-H29 expressed late in productive infection are exported and restrict HSV-1 replication and spread in recipient cells. Proc. Natl Acad. Sci. USA113(7), E894–E901 (2016).
  • Hoshina S , SekizukaT , KataokaMet al. Profile of exosomal and intracellular microRNA in gamma-herpesvirus-infected lymphoma cell lines. PLoS ONE11(9), e0162574 (2016).
  • Chugh PE , SinS-H , OzgurSet al. Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies. PLoS Pathog.9(7), e1003484 (2013).
  • Gourzones C , GelinA , BombikIet al. Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virol. J.7(1), 271 (2010).
  • Choi H , LeeH , KimSR , GhoYS , LeeSK. Epstein-Barr virus-encoded microRNA BART15-3p promotes cell apoptosis partially by targeting BRUCE. J. Virol.87(14), 8135–8144 (2013).
  • Choi H , LeeSK. TAX1BP1 downregulation by EBV-miR-BART15-3p enhances chemosensitivity of gastric cancer cells to 5-FU. Arch. Virol.162(2), 369–377 (2017).
  • Pegtel DM , CosmopoulosK , Thorley-LawsonDAet al. Functional delivery of viral miRNAs via exosomes. Proc. Natl Acad. Sci. USA107(14), 6328–6333 (2010).
  • Nuovo GJ , GarofaloM , ValeriNet al. Reovirus-associated reduction of microRNA-let-7d is related to the increased apoptotic death of cancer cells in clinical samples. Mod. Pathol.25(10), 1333 (2012).
  • Volinia S , GalassoM , SanaMEet al. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc. Natl Acad. Sci. USA109(8), 3024–3029 (2012).
  • Di Leva G , GarofaloM , CroceCM. MicroRNAs in cancer. Ann. Rev. Pathol.9, 287–314 (2014).
  • Harden ME , MungerK. Human papillomavirus 16 E6 and E7 oncoprotein expression alters microRNA expression in extracellular vesicles. Virology508, 63–69 (2017).
  • Pakfetrat M , YaghobiR , SalmanpoorZ , RoozbehJ , TorabinezhadS , KadkhodaeiS. Frequency of polyomavirus BK infection in kidney transplant patients suspected to nephropathy. Int. J. Organ Transplant. Med.6(2), 77–84 (2015).
  • Hirsch HH , BrennanDC , DrachenbergCBet al. Polyomavirus-associated nephropathy in renal transplantation: interdisciplinary analyses and recommendations. Transplantation79(10), 1277–1286 (2005).
  • Tian YC , LiYJ , ChenHCet al. Polyomavirus BK-encoded microRNA suppresses autoregulation of viral replication. Biochem. Biophys. Res. Commun.447(3), 543–549 (2014).
  • Kim MH , LeeYH , SeoJWet al. Urinary exosomal viral microRNA as a marker of BK virus nephropathy in kidney transplant recipients. 12(12), e0190068 (2017).
  • Knowles WA , PipkinP , AndrewsNet al. Population‐based study of antibody to the human polyomaviruses BKV and JCV and the simian polyomavirus SV40. J. Med. Virol.71(1), 115–123 (2003).
  • Egli A , InfantiL , DumoulinAet al. Prevalence of polyomavirus BK and JC infection and replication in 400 healthy blood donors. J. Infect. Dis.199(6), 837–846 (2009).
  • Polo C , PerezJ , MielnichuckA , FedeleC , NiuboJ , TenorioA. Prevalence and patterns of polyomavirus urinary excretion in immunocompetent adults and children. Clin. Microbiol. Infect.10(7), 640–644 (2004).
  • Bayer A , Delorme-AxfordE , SleigherCet al. Human trophoblasts confer resistance to viruses implicated in perinatal infection. Am. J. Obstet. Gynecol.212(1), 71.e71–71.e78 (2015).
  • Delorme-Axford E , DonkerRB , MouilletJ-Fet al. Human placental trophoblasts confer viral resistance to recipient cells. Proc. Natl Acad. Sci. USA110(29), 12048–12053 (2013).
  • Payne L , VenugopalK. Neoplastic diseases: Marek’s disease, avian leukosis and reticuloendotheliosis. Rev. Sci. Tech.19(2), 544–560 (2000).
  • Powell P , PayneL , FrazierJA , RennieM. T lymphoblastoid cell lines from Marek’s disease lymphomas. Nature251(5470), 79–80 (1974).
  • Neerukonda SN , Tavlarides-HontzP , MccarthyF , PendarvisK , ParcellsMS. Comparison of the transcriptomes and proteomes of serum exosomes from Marek’s disease virus-vaccinated and protected and lymphoma-bearing chickens. Genes10(2), 116 (2019).
  • Bernard MA , ZhaoH , YueSC , AnandaiahA , KozielH , TachadoSD. Novel HIV-1 miRNAs stimulate TNFα release in human macrophages via TLR8 signaling pathway. PLoS ONE9(9), e106006 (2014).
  • Hu G , YaoH , ChaudhuriAet al. Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death Dis.3(8), e381 (2012).
  • Chahar H , BaoX , CasolaA. Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses7(6), 3204–3225 (2015).
  • Shrivastava S , SteeleR , RayR , RayRB. MicroRNAs: role in hepatitis C virus pathogenesis. Genes Dis.2(1), 35–45 (2015).
  • Kim JH , LeeCH , LeeS-W. Hepatitis C virus infection stimulates transforming growth factor-β1 expression through up-regulating miR-192. J. Microbiol.54(7), 520–526 (2016).
  • Xiong L , ZhenS , YuQ , GongZ. HCV-E2 inhibits hepatocellular carcinoma metastasis by stimulating mast cells to secrete exosomal shuttle microRNAs. Oncol. Lett.14(2), 2141–2146 (2017).
  • Wang Y , YiJ , ChenX , ZhangY , XuM , YangZ. The regulation of cancer cell migration by lung cancer cell-derived exosomes through TGF-β and IL-10. Oncol. Lett.11(2), 1527–1530 (2016).
  • Cheung KL , JarrettR , SubramaniamSet al. Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J. Exp. Med.213(11), 2399–2412 (2016).
  • Jia Z , LiuY , GaoQet al. miR-490-3p inhibits the growth and invasiveness in triple-negative breast cancer by repressing the expression of TNKS2. Gene593(1), 41–47 (2016).
  • Xu X , ChenR , LiZet al. MicroRNA-490-3p inhibits colorectal cancer metastasis by targeting TGFβR1. BMC Cancer15(1), 1023 (2015).
  • Chen S , ChenX , XiuY-L , SunK-X , ZhaoY. MicroRNA-490-3P targets CDK1 and inhibits ovarian epithelial carcinoma tumorigenesis and progression. Cancer Lett.362(1), 122–130 (2015).
  • Zhang L-Y , LiuM , LiX , TangH. miR-490-3p modulates cell growth and epithelial to mesenchymal transition of hepatocellular carcinoma cells by targeting endoplasmic reticulum-Golgi intermediate compartment protein 3 (ERGIC3). J. Biol. Chem.288(6), 4035–4047 (2013).
  • Xu J , ZhangX , WangHet al. HCRP1 downregulation promotes hepatocellular carcinoma cell migration and invasion through the induction of EGFR activation and epithelial-mesenchymal transition. Biomed. Pharmacother.88, 421–429 (2017).
  • Cao C , LuS , SowaAet al. Priming with EGFR tyrosine kinase inhibitor and EGF sensitizes ovarian cancer cells to respond to chemotherapeutical drugs. Cancer Lett.266(2), 249–262 (2008).
  • Lin F-C , YoungHA. Interferons: success in anti-viral immunotherapy. Cytokine Growth Factor Rev.25(4), 369–376 (2014).
  • Ho B-C , YuI-S , LuL-Fet al. Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat. Commun.5, 3344 (2014).
  • Valadi H , EkströmK , BossiosA , SjöstrandM , LeeJJ , LötvallJO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol.9(6), 654 (2007).
  • Liu C-C , GuoM-S , LinFH-Yet al. Purification and characterization of enterovirus 71 viral particles produced from vero cells grown in a serum-free microcarrier bioreactor system. PLoS ONE6(5), e20005 (2011).
  • Mao L , WuJ , ShenL , YangJ , ChenJ , XuH. Enterovirus 71 transmission by exosomes establishes a productive infection in human neuroblastoma cells. Virus Genes52(2), 189–194 (2016).
  • Rekker K , SaareM , RoostAMet al. Comparison of serum exosome isolation methods for microRNA profiling. Clin. Biochem.47(1-2), 135–138 (2014).
  • György B , MódosK , PállingerÉet al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood117(4), e39–e48 (2011).
  • Narayanan A , IordanskiyS , DasRet al. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J. Biol. Chem.288(27), 20014–20033 (2013).
  • Esser MT , GrahamDR , CorenLVet al. Differential incorporation of CD45, CD80 (B7-1), CD86 (B7-2), and major histocompatibility complex class I and II molecules into human immunodeficiency virus type 1 virions and microvesicles: implications for viral pathogenesis and immune regulation. J. Virol.75(13), 6173–6182 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.