234
Views
0
CrossRef citations to date
0
Altmetric
Research Article

BioDog, Biomarker Detection for Improving Identification Power of Breast Cancer Histologic Grade in Methylomics

, , , , & ORCID Icon
Pages 1717-1732 | Received 15 Aug 2019, Accepted 03 Oct 2019, Published online: 18 Oct 2019

References

  • Rakha EA , Reis-FilhoJS , BaehnerFet al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res.12(4), 207 (2010).
  • Simon SD , BinesJ , WerutskyGet al. Characteristics and prognosis of stage I–III breast cancer subtypes in Brazil: the AMAZONA retrospective cohort study. Breast44, 113–119 (2019).
  • Elston CW , EllisIO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology19, 403–410 (1991). Histopathology41(3A), 151–152; discussion 152–153 (2002).
  • Galea MH , BlameyRW , ElstonCE , EllisIO. The Nottingham prognostic index in primary breast cancer. Breast Cancer Res.Treat.22(3), 207–219 (1992).
  • Rakha EA , El-SayedME , LeeAHSet al. Prognostic significance of Nottingham histologic grade in invasive breast carcinoma. J. Clin. Oncol.26(19), 3153–3158 (2008).
  • Natrajan R , LambrosMBK , GeyerFCet al. Loss of 16q in high grade breast cancer is associated with estrogen receptor status: evidence for progression in tumors with a luminal phenotype? Gene Chromosomes Cancer 48(4), 351–365 (2009).
  • Zhao Q , ShiX , XieY , HuangJ , ShiaB , MaS. Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA. Brief. Bioinform.16(2), 291–303 (2014).
  • Harbeck N , GnantM. Breast cancer. Lancet389(10074), 1134–1150 (2017).
  • Jirtle RL , SkinnerMK. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet.8(4), 253 (2007).
  • Smetanina MA , KelAE , Sevost’ianovaKSet al. DNA methylation and gene expression profiling reveal MFAP5 as a regulatory driver of extracellular matrix remodeling in varicose vein disease. Epigenomics10(8), 1103–1119 (2018).
  • Chen L , ZengT , PanX , ZhangYH , HuangT , CaiYD. Identifying methylation pattern and genes associated with breast cancer subtypes. Int. J. Mol. Sci.20(17), pii: E4269 (2019).
  • Bibikova M , BarnesB , TsanCet al. High density DNA methylation array with single CpG site resolution. Genomics98(4), 288–295 (2011).
  • Lou C , ZhaoJ , ShiRet al. sefOri: selecting the best-engineered squence features to predict DNA replication origins. Bioinformatics doi:10.1093/bioinformatics/btz506 (2019) ( Epub ahead of print).
  • Zhao R , ZhangR , TangTet al. TriZ-a rotation-tolerant image feature and its application in endoscope-based disease diagnosis. Comput. Biol. Med.99, 182–190 (2018).
  • Post AE , BussinkJ , SmidM , SweepFC , SpanPN. Downregulation of matrix Gla protein is a biomarker for tamoxifen-resistant and radioresistant breast cancer. Biomark. Med.13(10), 841–850 (2019).
  • Zhou Y , SimmonsJ , JordanCD , SonbolMB , MaihleN , TangSC. Aspirin treatment effect and association with PIK3CA mutation in breast cancer: a biomarker analysis. Clin. Breast Cancer doi:10.1016/j.clbc.2019.05.004 (2019).
  • Zubor P , GondovaA , PolivkaJ , Jret al. Breast cancer and Flammer syndrome: any symptoms in common for prediction, prevention and personalised medical approach? EPMA J. 8(2), 129–140 (2017).
  • Polivka J , Jr , KralickovaM , PolivkaJ , KaiserC , KuhnW , GolubnitschajaO. Mystery of the brain metastatic disease in breast cancer patients: improved patient stratification, disease prediction and targeted prevention on the horizon?EPMA J.8(2), 119–127 (2017).
  • De Ridder D , DeRidder J , ReindersMJ. Pattern recognition in bioinformatics. Brief. Bioinform.14(5), 633–647 (2013).
  • Tang J , WangY , FuJet al. A critical assessment of the feature selection methods used for biomarker discovery in current metaproteomics studies. Brief. Bioinform. doi:10.1093/bib/bbz061 (2019).
  • Choi J , ParkS , YoonY , AhnJ. Improved prediction of breast cancer outcome by identifying heterogeneous biomarkers. Bioinformatics33(22), 3619–3626 (2017).
  • Lyu H , WanM , HanJ , LiuR , WangC. A filter feature selection method based on the Maximal Information Coefficient and Gram-Schmidt Orthogonalization for biomedical data mining. Comput. Biol. Med.89, 264–274 (2017).
  • Cover TM , ThomasJA. Elements of Information Theory.John Wiley & Sons, NY, USA (2012).
  • Yu L , LiuH. Feature selection for high-dimensional data: a fast correlation-based filter solution. Presented at: Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington DC, USA, 21–24 August 2003. https://www.researchgate.net/publication/221345776_Feature_Selection_for_High-Dimensional_Data_A_Fast_Correlation-Based_Filter_Solution
  • Petricoin EF , ArdekaniAM , HittBAet al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet359(9306), 572–577 (2002).
  • Ye Y , ZhangR , ZhengW , LiuS , ZhouF. RIFS: a randomly restarted incremental feature selection algorithm. Sci. Rep.7(1), 13013 (2017).
  • Yuan F , ZhangYH , KongXY , CaiYD. Identification of candidate genes related to inflammatory bowel disease using minimum redundancy maximum relevance, incremental feature selection, and the shortest-path approach. Biomed Res. Int.2017, 5741948 (2017).
  • Yang J , HonavarV. Feature subset selection using a genetic algorithm. IEEE Intell. Syst.13(2), 44–49 (1998).
  • Guyon I , WestonJ , BarnhillS , VapnikV. Gene selection for cancer classification using support vector machines. Mach. Learn.46(1–3), 389–422 (2002).
  • Pudil P , NovovičováJ , KittlerJ. Floating search methods in feature selection. Pattern Recognit. Lett.15(11), 1119–1125 (1994).
  • Zhong N , DongJ , OhsugaS. Using rough sets with heuristics for feature selection. J. Intell. Inf. Syst.16(3), 199–214 (2001).
  • Huo D , HuH , RhieSKet al. Comparison of breast cancer molecular features and survival by African and European Ancestry in The Cancer Genome Atlas. JAMA Oncol.3(12), 1654–1662 (2017).
  • Siu MT , ButcherDT , TurinskyALet al. Functional DNA methylation signatures for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants. Clin. Epigenetics11(1), 103 (2019).
  • Wang M , KlevebringD , LindbergJ , CzeneK , GronbergH , RantalainenM. Determining breast cancer histological grade from RNA-sequencing data. Breast Cancer Res.18(1), 48 (2016).
  • Tang H , SebtiS , TitoneRet al. Decreased BECN1 mRNA expression in human breast cancer is associated with estrogen receptor-negative subtypes and poor prognosis. EBioMedicine2(3), 255–263 (2015).
  • Yu KH , ZhangC , BerryGJet al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun.7, 12474 (2016).
  • Du P , ZhangX , HuangCCet al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC bioinformatics11, 587 (2010).
  • Wang B , MezliniAM , DemirFet al. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods11(3), 333–337 (2014).
  • Chaudharyl K , PoirionlOB , LuL , GarmireLX. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res.24(6), 1248–1259 (2018).
  • Xiang Q , DaiX , DengYet al. Missing value imputation for microarray gene expression data using histone acetylation information. BMC bioinformatics9(1), 252–252 (2008).
  • Feng X , LiJ , LiHet al. Age is important for the early-stage detection of breast cancer on both transcriptomic and methylomic biomarkers. Front. Genet.10, 212 (2019).
  • Deshpande S , ShuttleworthJ , YangJ , TaramonliS , EnglandM. PLIT: an alignment-free computational tool for identification of long non-coding RNAs in plant transcriptomic datasets. Comput. Biol. Med.105, 169–181 (2019).
  • Zhang R , ZhaoR , ZhaoXet al. pyHIVE, a health-related image visualization and engineering system using Python. BMC bioinformatics19(1), 452 (2018).
  • Lin WL , ChouYF , SunCH , LinCC , HsuCJ , WuHP. Evaluation of thirty patients with eustachian tube dysfunction in Taiwan by questionnaire survey. J. Formos. Med. Assoc. doi:10.1016/j.jfma.2019.08.017 (2019).
  • Khalesi N , ChoobdarFA , KhorasaniM , SarviF , HaghighiAski B , KhodadostM. Accuracy of oxygen saturation index in determining the severity of respiratory failure among preterm infants with respiratory distress syndrome. J. Matern. Fetal. Neonatal. Med. doi:10.1080/14767058.2019.1666363, 1–6 (2019).
  • Salta S , NunesSP , Fontes-SousaMet al. A DNA methylation-based test for breast cancer detection in circulating cell-free DNA. J. Clin. Med.7(11), (2018).
  • Citak-Er F , FiratZ , KovanlikayaI , TureU , Ozturk-IsikE. Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T. Comput. Biol. Med.99, 154–160 (2018).
  • Kim H , KimY , HanB , JangJY , KimY. Clinically applicable deep learning algorithm using quantitative proteomic data. J. Proteome. Res. doi:10.1021/acs.jproteome.9b00268 (2019).
  • Wang PH , TuYS , TsengYJ. PgpRules: a decision tree based prediction server for P-glycoprotein substrates and inhibitors. Bioinformatics doi:10.1093/bioinformatics/btz546 (2019).
  • Wang Y , PanZ , PanY. A training data set cleaning method by classification ability ranking for the k-nearest neighbor classifier. IEEE Trans. Neural Netw. Learn. Syst. doi:10.1109/TNNLS.2019.2920864 (2019).
  • Lee HS , LynchKF , KrischerJP , GroupTS. Nested case–control data analysis using weighted conditional logistic regression in The Environmental Determinants of Diabetes in the Young (TEDDY) study: a novel approach. Diabetes Metab. Res. Rev. doi:10.1002/dmrr.3204e3204 (2019).
  • Friedman JH . Stochastic gradient boosting. Comput. Stat. Data Anal.38(4), 367–378 (2002).
  • Chen T , GuestrinC. Xgboost: a scalable tree boosting system. Presented at: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (2016). https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf
  • Ben Brahim A , LimamM. Ensemble feature selection for high dimensional data: a new method and a comparative study. Adv. Data Anal. Classif.12(4), 937–952 (2018).
  • Yan K , ZhangD. Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensor. Actuat. B Chem.212, 353–363 (2015).
  • Ren Y , FengX , XiaXet al. Gender specificity improves the early-stage detection of clear cell renal cell carcinoma based on methylomic biomarkers. Biomark. Med.12(6), 607–618 (2018).
  • Baldi P , LongAD. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics17(6), 509–519 (2001).
  • Liu WM , MeiR , DiXet al. Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics18(12), 1593–1599 (2002).
  • Mortazavi A , MoattarMH. Robust feature selection from microarray data based on cooperative game theory and qualitative mutual information. Adv. Bioinformatics2016, 1058305 (2016).
  • Benjamini Y , HochbergY. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. B57(1), 289–300 (1995).
  • Malan NS , SharmaS. Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals. Comput. Biol. Med.107, 118–126 (2019).
  • Balram D , LianKY , SebastianN. Air quality warning system based on a localized PM2.5 soft sensor using a novel approach of Bayesian regularized neural network via forward feature selection. Ecotoxicol. Environ. Saf.182, 109386 (2019).
  • Alhaj TA , SirajMM , ZainalA , ElshoushHT , ElhajF. Feature selection using information gain for improved structural-based alert correlation. PLoS ONE11(11), e0166017 (2016).
  • Kannan SS , RamarajN. A novel hybrid feature selection via Symmetrical Uncertainty ranking based local memetic search algorithm. Knowl. Based Syst.23(6), 580–585 (2010).
  • Xu C , LiuJ , YangWet al. An OMIC biomarker detection algorithm TriVote and its application in methylomic biomarker detection. Epigenomics10(4), 335–347 (2018).
  • Geurts P , ErnstD , WehenkelL. Extremely randomized trees. Mach. Learn.63(1), 3–42 (2006).
  • Breiman L . Random forests. Mach. Learn.45(1), 5–32 (2001).
  • Bradley PS , MangasarianOL. Feature selection via concave minimization and support vector machines. Presented at: ICML (1998).
  • Ng AY . Feature selection, L 1 vs. L 2 regularization, and rotational invariance. Presented at: Proceedings of the Twenty-First International Conference on Machine Learning.Banff, Canada, 2004. https://icml.cc/Conferences/2004/proceedings/papers/354.pdf
  • Maldonado S , WeberR , FamiliF. Feature selection for high-dimensional class-imbalanced data sets using Support Vector Machines. Inform. Sciences286, 228–246 (2014).
  • Raevsky OA . CNS multiparameter optimization approach: is it in accordance with Occam’s Razor Principle?Mol. Inform.35(3–4), 94–98 (2016).
  • Frohlich H , PatjoshiS , YeghiazaryanK , KehrerC , KuhnW , GolubnitschajaO. Premenopausal breast cancer: potential clinical utility of a multi-omics based machine learning approach for patient stratification. EPMA J.9(2), 175–186 (2018).
  • Golubnitschaja O , FilepN , YeghiazaryanK , BlomHJ , Hofmann-ApitiusM , KuhnW. Multi-omic approach decodes paradoxes of the triple-negative breast cancer: lessons for predictive, preventive and personalised medicine. Amino Acids50(3–4), 383–395 (2018).
  • Weigelt B , GeyerFC , Reis-FilhoJS. Histological types of breast cancer: how special are they?Mol. Oncol.4(3), 192–208 (2010).
  • Ge R , ZhouM , LuoYet al. McTwo: a two-step feature selection algorithm based on maximal information coefficient. BMC Bioinformatics17, 142 (2016).
  • Jiao X , ShermanBT , HuangDWet al. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics28(13), 1805–1806 (2012).
  • Boyle EI , WengS , GollubJet al. GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics20(18), 3710–3715 (2004).
  • Rakha EA , AleskandaraniM , TossMSet al. Breast cancer histologic grading using digital microscopy: concordance and outcome association. J. Clin. Pathol.71(8), 680–686 (2018).
  • Rivero EM , MartinezLM , BruqueCD , GargiuloL , BruzzoneA , LuthyIA. “Prognostic significance of alpha2- and beta2-adrenoceptor gene expression in breast cancer patients”. Br. J. Clin. Pharmacol. doi:10.1111/bcp.14030 (2019).
  • Hsu NC , NienPY , YokoyamaKK , ChuPY , HouMF. High chondroitin sulfate proteoglycan 4 expression correlates with poor outcome in patients with breast cancer. Biochem. Biophys. Res. Commun.441(2), 514–518 (2013).
  • Kummel S , EggemannH , LuftnerDet al. Significant changes in circulating plasma levels of IGF1 and IGFBP3 after conventional or dose-intensified adjuvant treatment of breast cancer patients with one to three positive lymph nodes. Int. J. Biol. Markers22(3), 186–193 (2007).
  • Chen CH , ChenPY , LinYYet al. Suppression of tumor growth via IGFBP3 depletion as a potential treatment in glioma. J. Neurosurg. doi:10.3171/2018.8.JNS1812171–12 (2019).
  • Hoyo C , GrubberJ , Demark-WahnefriedWet al. Grade-specific prostate cancer associations of IGF1 (CA)19 repeats and IGFBP3-202A/C in blacks and whites. J. Natl Med. Assoc.99(7), 718–722 (2007).
  • Ali SHB , BangashKS , RaufAet al. Identification of novel potential genetic predictors of urothelial bladder carcinoma susceptibility in Pakistani population. Fam. Cancer16(4), 577–594 (2017).
  • Mayakonda A , LinDC , AssenovY , PlassC , KoefflerHP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res.28(11), 1747–1756 (2018).
  • Bataillon G , FuhrmannL , GirardEet al. High rate of PIK3CA mutations but no TP53 mutations in low-grade adenosquamous carcinoma of the breast. Histopathology73(2), 273–283 (2018).
  • Canadas A , SantosM , MedeirosR , Dias-PereiraP. Influence of E-cadherin genetic variation in canine mammary tumour risk, clinicopathological features and prognosis. Vet. Comp. Oncol. doi:10.1111/vco.12510 (2019).
  • Sirisena ND , AdeyemoA , KuruppuAI , SamaranayakeN , DissanayakeVHW. Genetic variants associated with clinicopathological profiles in sporadic breast cancer in Sri Lankan women. J. Breast Cancer21(2), 165–172 (2018).
  • Weigelt B , HorlingsHM , KreikeBet al. Refinement of breast cancer classification by molecular characterization of histological special types. J. Pathol.216(2), 141–150 (2008).
  • Metzger-Filho O , FerreiraAR , JeselsohnRet al. Mixed invasive ductal and lobular carcinoma of the breast: prognosis and the importance of histologic grade. Oncologist24(7), e441–e449 (2019).
  • Kuchenbaecker KB , NeuhausenSL , RobsonMet al. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res.16(6), 3416 (2014).
  • Palacios J , HonradoE , OsorioAet al. Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clin. Cancer Res.9(10 Pt 1), 3606–3614 (2003).
  • Mavaddat N , BarrowdaleD , AndrulisILet al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol. Biomarkers Prev.21(1), 134–147 (2012).
  • Nassar FJ , NasrR , TalhoukR. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol. Ther.172, 34–49 (2017).
  • Cooper LA , DemiccoEG , SaltzJH , PowellRT , RaoA , LazarAJ. PanCancer insights from The Cancer Genome Atlas: the pathologist’s perspective. J. Pathol.244(5), 512–524 (2018).
  • Saltz J , GuptaR , HouLet al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep.23(1), 181–193 e187 (2018).
  • Perou CM , SorlieT , EisenMBet al. Molecular portraits of human breast tumours. Nature406(6797), 747–752 (2000).
  • Kourou K , ExarchosTP , ExarchosKP , KaramouzisMV , FotiadisDI. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J.13, 8–17 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.