89
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Pregnancy-Associated Changes in Cervical Noncoding RNA

ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 1013-1025 | Received 15 Aug 2019, Accepted 20 Mar 2020, Published online: 18 Aug 2020

References

  • Peschansky VJ , WahlestedtC. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics9(1), 3–12 (2014).
  • Lu J , GetzG , MiskaEAet al. MicroRNA expression profiles classify human cancers. Nature435(7043), 834–838 (2005).
  • O’Connell RM , RaoDS , ChaudhuriAA , BaltimoreD. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol.10(2), 111–122 (2010).
  • Bhan A , SoleimaniM , MandalSS. Long noncoding RNA and cancer: a new paradigm. Cancer Res.77(15), 3965–3981 (2017).
  • Sadri Nahand J , Bokharaei-SalimF , KarimzadehMet al. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med.21(4), 246–278 (2019).
  • Savardashtaki A , ShabaninejadZ , MovahedpourA , SahebnasaghR , MirzaeiH , HamblinMR. MiRNAs derived from cancer-associated fibroblasts in colorectal cancer. Epigenomics11(14), 1627–1645 (2019).
  • Eidem HR , AckermanWE , McGaryKL , AbbotP , RokasA. Gestational tissue transcriptomics in term and preterm human pregnancies: a systematic review and meta-analysis. BMC Med. Genomics8(1), (2015). https://doi.org/10.1186/s12920-015-0099-8
  • Barchitta M , MaugeriA , QuattrocchiA , AgrifoglioO , AgodiA. The role of miRNAs as biomarkers for pregnancy outcomes: a comprehensive review. Int. J. Genomics2017, 8067972 (2017).https://doi.org/10.1155/2017/8067972
  • McAninch D , RobertsCT , Bianco-MiottoT. Mechanistic insight into long noncoding RNAs and the placenta. Int. J. Mol. Sci.18(7), pii: E1371 (2017).
  • Goldenberg RL , IamsJD , MiodovnikMet al. The preterm prediction study: risk factors in twin gestations. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am. J. Obs. Gynecol.175, 1047–1053 (1996).
  • Hassan SS , RomeroR , VidyadhariDet al. Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound Obstet. Gynecol.38(1), 18–31 (2011).
  • Read CP , WordRA , RuscheinskyMA , TimmonsBC , MahendrooMS. Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice. Reproduction134(2), 327–340 (2007).
  • Timmons BC , MitchellSM , GilpinC , MahendrooMS. Dynamic changes in the cervical epithelial tight junction complex and differentiation occur during cervical ripening and parturition. Endocrinology148(3), 1278–1287 (2007).
  • Akgul Y , HoltR , MummertM , WordA , MahendrooM. Dynamic changes in cervical glycosaminoglycan composition during normal pregnancy and preterm birth. Endocrinology153(7), 3493–3503 (2012).
  • Dubicke A , FranssonE , CentiniGet al. Pro-inflammatory and anti-inflammatory cytokines in human preterm and term cervical ripening. J. Reprod. Immunol.84(2), 176–185 (2010).
  • Gonzalez JM , XuH , ChaiJ , OforiE , ElovitzMA. Preterm and term cervical ripening in CD1 mice (mus musculus): similar or divergent molecular mechanisms?Biol. Reprod.81(6), 1226–1232 (2009).
  • Barnum C , FeyJ , WeissSet al. Tensile mechanical properties and dynamic collagen fiber re-alignment of the murine cervix are dramatically altered throughout pregnancy. J. Biomech. Eng.139(6), 0610081–0610087 (2017).
  • Sierra L , BrownA , BariláGet al. Colonization of the cervicovaginal space with Gardnerella vaginalis leads to local inflammation and cervical remodeling in pregnant mice. PLoS ONE13(1), e0191524 (2018).
  • Elovitz MA , BrownAG , AntonL , GilstropM , HeiserL , BastekJ. Distinct cervical microRNA profiles are present in women destined to have a preterm birth. Am. J. Obstet. Gynecol.210(3), 221.e1–11 (2014).
  • Sanders AP , BurrisHH , JustACet al. MicroRNA expression in the cervix during pregnancy is associated with length of gestation. Epigenetics10(3), 221–228 (2015).
  • Renthal NE , ChenC-C , WilliamsKC , GerardRD , Prange-KielJ , MendelsonCR. miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc. Natl Acad. Sci. USA107(48), 20828–20833 (2010).
  • Williams KC , RenthalNE , CondonJC , GerardRD , MendelsonCR. MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labor. Proc. Natl Acad. Sci. USA109(19), 7529–7534 (2012).
  • Williams KC , RenthalNE , GerardRD , MendelsonCR. The microRNA (miR)-199a/214 cluster mediates opposing effects of progesterone and estrogen on uterine contractility during pregnancy and labor. Mol. Endocrinol.26(11), 1857–1867 (2012).
  • Anton L , DeVineA , SierraLJ , BrownAG , ElovitzMA. MIR-143 and miR-145 disrupt the cervical epithelial barrier through dysregulation of cell adhesion, apoptosis and proliferation. Sci. Rep.7(1), 3020 (2017).
  • Sanders AP , GenningsC , SvenssonKet al. Bacterial and cytokine mixtures predict the length of gestation and are associated with miRNA expression in the cervix. Epigenomics9(1), 33–45 (2017).
  • Sanders AP , BurrisHH , JustACet al. Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure. Epigenomics7(6), 885–896 (2015).
  • Burris HH , JustAC , HavilandMJet al. Long noncoding RNA expression in the cervix mid-pregnancy is associated with the length of gestation at delivery. Epigenetics13(7), 742–750 (2018).
  • Livak KJ , SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods25(4), 402–408 (2001).
  • Agarwal V , BellGW , NamJW , BartelDP. Predicting effective microRNA target sites in mammalian mRNAs. eLife4, e05005 (2015).
  • Ashburner M , BallCA , BlakeJAet al. Gene ontology: tool for the unification of biology. Nat. Genet.25(1), 25–29 (2000).
  • The Gene Ontology Consortium . Expansion of the gene ontology knowledgebase and resources: the gene ontology consortium. Nucleic Acids Res.45(D1), D331–D338 (2017).
  • Mi H , HuangX , MuruganujanAet al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res.45(D1), D183–D189 (2017).
  • Gaur A , JewellDA , LiangYet al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res.67(6), 2456–2468 (2007).
  • Gerson KD , MaddulaVS , SeligmannBE , ShearstoneJR , KhanA , MercurioAM. Effects of beta4 integrin expression on microRNA patterns in breast cancer. Biol. Open1(7), 658–666 (2012).
  • Cheng C , FuX , AlvesP , GersteinM. mRNA expression profiles show differential regulatory effects of microRNAs between estrogen receptor-positive and estrogen receptor-negative breast cancer. Genome Biol.10(9), R90 (2009).
  • Van Der Auwera I , LimameR , Van DamP , VermeulenPB , DirixLY , Van LaereSJ. Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br. J. Cancer103(4), 532–541 (2010).
  • Srivastava SK , AhmadA , ZubairHet al. MicroRNAs in gynecological cancers: small molecules with big implications. Cancer Lett.407, 123–138 (2017).
  • Nahand JS , Taghizadeh-boroujeniS , KarimzadehMet al. microRNAs: new prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J. Cell. Physiol.234(10), 17064–17099 (2019).
  • Sadri Nahand J , MoghoofeiM , SalmaninejadAet al. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: a review. Int. J. Cancer146(2), 305–320 (2020).
  • Chen J , YaoD , LiYet al. Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma. Int. J. Mol. Med.32(3), 557–567 (2013).
  • Lee JW , ChoiCH , ChoiJJet al. Altered MicroRNA expression in cervical carcinomas. Clin. Cancer Res.14(9), 2535–2542 (2008).
  • Gocze K , GombosK , JuhaszKet al. Unique microRNA expression profiles in cervical cancer. Anticancer Res.33(6), 2561–2568 (2013).
  • Sharma S , HussainS , SoniKet al. Novel MicroRNA signatures in HPV-mediated cervical carcinogenesis in Indian women. Tumor Biol.37(4), 4585–4595 (2016).
  • Li M-Y , HuX-X. Meta-analysis of microRNA expression profiling studies in human cervical cancer. Med. Oncol.32(6), 510 (2015).
  • Coimbra EC , DAConceicao Gomes Leitao M , JuniorMRB , DEOliveira THA , DACosta Silva Neto J , DEFreitas AC. Expression profile of MicroRNA-203 and its DeltaNp63 target in cervical carcinogenesis: prospects for cervical cancer screening. Anticancer Res.36(8), 3939–3946 (2016).
  • Wander PL , BoykoEJ , HevnerKet al. Circulating early- and mid-pregnancy microRNAs and risk of gestational diabetes. Diabetes Res. Clin. Pract.132, 1–9 (2017).
  • Zhang JT , CaiQY , JiSSet al. Decreased MIR-143 and increased MIR-21 placental expression levels are associated with macrosomia. Mol. Med. Rep.13(4), 3273–3280 (2016).
  • Jiang H , WenY , HuL , MiaoT , ZhangM , DongJ. Serum MicroRNAs as diagnostic biomarkers for macrosomia. Reprod. Sci.22(6), 664–671 (2015).
  • Jiang H , WuW , ZhangMet al. Aberrant upregulation of MIR-21 in placental tissues of macrosomia. J. Perinatol.34(9), 658–663 (2014).
  • Jairajpuri DS , MalallaZH , MahmoodN , AlmawiWY. Circulating microRNA expression as predictor of preeclampsia and its severity. Gene627, 543–548 (2017).
  • Lasabová Z , VážanM , ZibolenováJ , ŠvecováI , ZoraLasabová A. Overexpression of miR-21 and miR-122 in preeclamptic placentas. Neuroendocr. Lett. Neuroendocrinol. Lett.36(7), 695–699 (2015).
  • Hromadnikova I , KotlabovaK , HympanovaL , KroftaL. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb. Res.137, 126–140 (2016).
  • Choi SY , YunJ , LeeOJet al. MicroRNA expression profiles in placenta with severe preeclampsia using a PNA-based microarray. Placenta34(9), 799–804 (2013).
  • Whitehead CL , TehWT , WalkerSP , LeungC , LarmourL , TongS. Circulating microRNAs in maternal blood as potential biomarkers for fetal hypoxia in-utero. PLoS ONE8(11), e78487 (2013).
  • Cindrova-Davies T , HerreraEA , NiuY , KingdomJ , GiussaniDA , BurtonGJ. Reduced cystathionine γ-lyase and increased miR-21 expression are associated with increased vascular resistance in growth-restricted pregnancies: hydrogen sulfide as a placental vasodilator. Am. J. Pathol.182(4), 1448–1458 (2013).
  • Maccani MA , PadburyJF , MarsitCJ. miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS ONE6(6), e21210 (2011).
  • Gonzalez JM , DongZ , RomeroR , GirardiG. Cervical remodeling/ripening at term and preterm delivery: the same mechanism initiated by different mediators and different effector cells. PLoS ONE6(11), e26877 (2011).
  • Mahendroo M . Cervical remodeling in term and preterm birth: insights from an animal model. Reproduction143(4), 429–438 (2012).
  • ACOG . Cell- free DNA screening for fetal aneuploidy. Obs. Gynecol.126(3), e31–e37 (2015).
  • Katz-Jaffe MG , MantzarisD , CramDS. DNA identification of fetal cells isolated from cervical mucus: potential for early non-invasive prenatal diagnosis. BJOG112(5), 595–600 (2005).
  • Moser G , DrewloS , HuppertzB , RandallArmant D. Trophoblast retrieval and isolation from the cervix: origins of cervical trophoblasts and their potential value for risk assessment of ongoing pregnancies. Hum. Reprod. Update24(4), 484–496 (2018).
  • Vafadar A , ShabaninejadZ , MovahedpourAet al. Long non-coding RNAs as epigenetic regulators in cancer. Curr. Pharm. Des.25(33), 3563–3577 (2019).
  • Naeli P , PourhanifehMH , KarimzadehMRet al. Circular RNAs and gastrointestinal cancers: epigenetic regulators with a prognostic and therapeutic role. Crit. Rev. Oncol. Hematol.145, 102854 (2020).
  • Shabaninejad Z , VafadarA , MovahedpourAet al. Circular RNAs in cancer: new insights into functions and implications in ovarian cancer. J. Ovarian Res.12(1), 84 (2019).
  • Karlsson O , RodosthenousRS , JaraCet al. Detection of long non-coding RNAs in human breastmilk extracellular vesicles: implications for early child development. Epigenetics11(10), 721–729 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.