348
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Dynamic N6-Methyladenosine RNA Methylation in Brain and Diseases

, &
Pages 371-380 | Received 17 Nov 2019, Accepted 07 Jan 2020, Published online: 21 Feb 2020

References

  • Bae BI , JayaramanD , WalshCA. Genetic changes shaping the human brain. Dev. Cell32(4), 423–434 (2015).
  • Leone DP , SrinivasanK , ChenB , AlcamoE , McconnellSK. The determination of projection neuron identity in the developing cerebral cortex. Curr. Opin. Neurobiol.18(1), 28–35 (2008).
  • Molyneaux BJ , ArlottaP , MenezesJR , MacklisJD. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci.8(6), 427–437 (2007).
  • Rakic P , AyoubAE , BreunigJJ , DominguezMH. Decision by division: making cortical maps. Trends Neurosci.32(5), 291–301 (2009).
  • Taverna E , GotzM , HuttnerWB. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell. Dev. Biol.30, 465–502 (2014).
  • Feng J , FouseS , FanG. Epigenetic regulation of neural gene expression and neuronal function. Pediatr. Res.61(5 Pt 2), 58R–63R (2007).
  • Hirabayashi Y , GotohY. Epigenetic control of neural precursor cell fate during development. Nat. Rev. Neurosci.11(6), 377–388 (2010).
  • Sun J , SunJ , MingGL , SongH. Epigenetic regulation of neurogenesis in the adult mammalian brain. Eur. J. Neurosci.33(6), 1087–1093 (2011).
  • Yao B , ChristianKM , HeC , JinP , MingGL , SongH. Epigenetic mechanisms in neurogenesis. Nat. Rev. Neurosci.17(9), 537–549 (2016).
  • Martynoga B , DrechselD , GuillemotF. Molecular control of neurogenesis: a view from the mammalian cerebral cortex. Cold Spring Harb. Perspect. Biol.4(10) a008359 (2012).
  • Miller JA , DingSL , SunkinSMet al. Transcriptional landscape of the prenatal human brain. Nature508(7495), 199–206 (2014).
  • Nord AS , PattabiramanK , ViselA , RubensteinJLR. Genomic perspectives of transcriptional regulation in forebrain development. Neuron85(1), 27–47 (2015).
  • Egan CM , NymanU , SkotteJet al. CHD5 is required for neurogenesis and has a dual role in facilitating gene expression and polycomb gene repression. Dev. Cell26(3), 223–236 (2013).
  • Lee J , TaylorCA , BarnesKMet al. A Myt1 family transcription factor defines neuronal fate by repressing non-neuronal genes. Elife8, e46703 (2019).
  • Mu L , BertiL , MasserdottiGet al. SoxC transcription factors are required for neuronal differentiation in adult hippocampal neurogenesis. J. Neurosci.32(9), 3067–3080 (2012).
  • Rraklli V , SoderstenE , NymanU , HageyDW , HolmbergJ. Elevated levels of ZAC1 disrupt neurogenesis and promote rapid in vivo reprogramming. Stem Cell Res.16(1), 1–9 (2016).
  • Sansom SN , GriffithsDS , FaedoAet al. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet.5(6), e1000511 (2009).
  • Bokar JA , ShambaughME , PolayesD , MateraAG , RottmanFM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA3(11), 1233–1247 (1997).
  • Liu J , YueY , HanDet al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol.10(2), 93–95 (2014).
  • Wang Y , LiY , TothJI , PetroskiMD , ZhangZ , ZhaoJC. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell. Biol.16(2), 191–198 (2014).
  • Agarwala SD , BlitzblauHG , HochwagenA , FinkGR. RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet.8(6), e1002732 (2012).
  • Horiuchi K , KawamuraT , IwanariHet al. Identification of Wilms’ tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J. Biol. Chem.288(46), 33292–33302 (2013).
  • Patil DP , ChenCK , PickeringBFet al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature537(7620), 369–373 (2016).
  • Jia G , FuY , ZhaoXet al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol.7(12), 885–887 (2011).
  • Zheng GQ , DahlJA , NiuYMet al. ALKBH5 Is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell49(1), 18–29 (2013).
  • Shi H , WangX , LuZet al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res.27(3), 315–328 (2017).
  • Wang X , LuZ , GomezAet al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature505(7481), 117–120 (2014).
  • Wang X , ZhaoBS , RoundtreeIAet al. N-6-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell161(6), 1388–1399 (2015).
  • Alarcon CR , LeeH , GoodarziH , HalbergN , TavazoieSF. N6-methyladenosine marks primary microRNAs for processing. Nature519(7544), 482–485 (2015).
  • Li A , ChenYS , PingXLet al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res.27(3), 444–447 (2017).
  • Zhao BS , RoundtreeIA , HeC. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol.18(1), 31–42 (2017).
  • Shi H , WeiJ , HeC. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell74(4), 640–650 (2019).
  • Stiles J , JerniganTL. The basics of brain development. Neuropsychol. Rev.20(4), 327–348 (2010).
  • Dominissini D , Moshitch-MoshkovitzS , SchwartzSet al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature485(7397), 201–206 (2012).
  • Yoon KJ , RingelingFR , VissersCet al. Temporal control of mammalian cortical neurogenesis by m(6)A methylation. Cell171(4), 877.e817–889.e817 (2017).
  • Ma C , ChangM , LvHet al. RNA m(6)A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol.19(1), 68 (2018).
  • Chang M , LvH , ZhangWet al. Region-specific RNA m(6)A methylation represents a new layer of control in the gene regulatory network in the mouse brain. Open Biol.7(9), 170166 (2017).
  • Gage FH , RayJ , FisherLJ. Isolation, characterization, and use of stem cells from the CNS. Annu. Rev. Neurosci.18, 159–192 (1995).
  • Kilpatrick TJ , BartlettPF. Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron10(2), 255–265 (1993).
  • Reynolds BA , WeissS. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science255(5052), 1707–1710 (1992).
  • Christian KM , SongH , MingGL. Functions and dysfunctions of adult hippocampal neurogenesis. Annu. Rev. Neurosci.37, 243–262 (2014).
  • Kang E , WenZ , SongH , ChristianKM , MingGL. Adult neurogenesis and psychiatric disorders. Cold Spring Harb. Perspect. Biol.8(9), a019026 (2016).
  • Wang Y , LiY , YueMet al. N(6)-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat. Neurosci.21(2), 195–206 (2018).
  • Edens BM , VissersC , SuJet al. FMRP modulates neural differentiation through m(6)A-dependent mRNA nuclear export. Cell Rep.28(4), 845.e845–854 e845 (2019).
  • Zhang F , KangY , WangMet al. Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Hum. Mol. Genet.27(22), 3936–3950 (2018).
  • Li Z , WengH , SuRet al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell31(1), 127–141 (2017).
  • Li M , ZhaoX , WangWet al. Ythdf2-mediated m(6)A mRNA clearance modulates neural development in mice. Genome Biol.19(1), 69 (2018).
  • Merkurjev D , HongWT , IidaKet al. Synaptic N(6)-methyladenosine (m(6)A) epitranscriptome reveals functional partitioning of localized transcripts. Nat. Neurosci.21(7), 1004–1014 (2018).
  • Koranda JL , DoreL , ShiHet al. Mettl14 is essential for epitranscriptomic regulation of striatal function and learning. Neuron99(2), 283.e285–292.e285 (2018).
  • Chen J , ZhangYC , HuangCet al. m(6)A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2. Genomics Proteomics Bioinformatics17(2), 154–168 (2019).
  • Zhao X , YangY , SunBF , ZhaoYL , YangYG. FTO and obesity: mechanisms of association. Curr. Diab. Rep.14(5), 486 (2014).
  • Choudhry Z , SenguptaSM , GrizenkoNet al. Association between obesity-related gene FTO and ADHD. Obesity (Silver Spring)21(12), E738–E744 (2013).
  • Velders FP , DeWit JE , JansenPWet al. FTO at rs9939609, food responsiveness, emotional control and symptoms of ADHD in preschool children. PLoS ONE7(11), e49131 (2012).
  • Milaneschi Y , LamersF , MbarekH , HottengaJJ , BoomsmaDI , PenninxBW. The effect of FTO rs9939609 on major depression differs across MDD subtypes. Mol. Psychiatry19(9), 960–962 (2014).
  • Hess ME , HessS , MeyerKDet al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat. Neurosci.16(8), 1042–1048 (2013).
  • Keller L , XuW , WangHX , WinbladB , FratiglioniL , GraffC. The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer’s disease risk: a prospective cohort study. J. Alzheimers Dis.23(3), 461–469 (2011).
  • Reitz C , TostoG , MayeuxR , LuchsingerJA, Group N-LNFS, Alzheimer’s Disease Neuroimaging I. Genetic variants in the fat and obesity associated (FTO) gene and risk of Alzheimer’s disease. PLoS ONE7(12), e50354 (2012).
  • Liu X , ShimadaT , OtowaTet al. Genome-wide association study of autism spectrum disorder in the East Asian populations. Autism Res.9(3), 340–349 (2016).
  • Engel M , EggertC , KaplickPMet al. The role of m(6)A/m-RNA methylation in stress response regulation. Neuron99(2), 389.e389–403.e389 (2018).
  • Spychala A , RutherU. FTO affects hippocampal function by regulation of BDNF processing. PLoS ONE14(2), e0211937 (2019).
  • Sun L , MaL , ZhangHet al. Fto deficiency reduces anxiety- and depression-like behaviors in mice via alterations in gut microbiota. Theranostics9(3), 721–733 (2019).
  • Chen X , YuC , GuoMet al. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death. ACS Chem. Neurosci.10(5), 2355–2363 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.