3,867
Views
0
CrossRef citations to date
0
Altmetric
Review

miRNA in Prostate Cancer: Challenges toward Translation

ORCID Icon, , , , &
Pages 543-558 | Received 20 Sep 2019, Accepted 14 Feb 2020, Published online: 08 Apr 2020

References

  • World Health Organization International Agency for Research on Cancer (IARC) . GLOBOCAN 2018: estimated cancer incidence, mortality and prevalence worldwide in 2018. (2018). https://gco.iarc.fr/today/
  • World Health Organization International Agency for Research on Cancer (IARC) . GLOBOCAN 2018: estimated cancer incidence, mortality and prevalence worldwide in 2018. (2018). http://gco.iarc.fr/tomorrow/
  • Egevad L , DelahuntB , SrigleyJR , SamaratungaH. International Society of Urological Pathology (ISUP) grading of prostate cancer – an ISUP consensus on contemporary grading. APMIS124(6), 433–435 (2016).
  • Stewart GD , Van NesteL , DelvennePet al. Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J. Urol.189(3), 1110–1116 (2013).
  • Salagierski M , SchalkenJA. Molecular diagnosis of prostate cancer: PCA3 and TMPRSS2:ERG gene fusion. J. Urol.187(3), 795–801 (2012).
  • Draisma G , EtzioniR , TsodikovAet al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J. Natl Cancer Inst.101(6), 374–383 (2009).
  • Kozomara A , BirgaoanuM , Griffiths-JonesS. MiRBase: from microRNA sequences to function. Nucleic Acids Res.47(1), 155–162 (2019).
  • Mitchell PS , ParkinRK , KrohEMet al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105(30), 10513–10518 (2008).
  • Bertoli G , CavaC , CastiglioniI. MicroRNAs as biomarkers for diagnosis, prognosis and theranostics in prostate cancer. Int. J. Mol. Sci.17(3), 421 (2016).
  • Song CJ , ChenH , ChenLZ , RuGM , GuoJJ , DingQN. The potential of microRNAs as human prostate cancer biomarkers: a meta-analysis of related studies. J. Cell. Biochem.119(3), 2763–2786 (2018).
  • Jarry J , SchadendorfD , GreenwoodC , SpatzA , van KempenLC. The validity of circulating microRNAs in oncology: five years of challenges and contradictions. Mol. Oncol.8(4), 819–829 (2014).
  • McDonald JS , MilosevicD , ReddiHV , GrebeSK , Algeciras-SchimnichA. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin. Chem.57(6), 833–840 (2011).
  • Lombardi G , PeregoS , SansoniV , BanfiG. Circulating miRNA as fine regulators of the physiological responses to physical activity: pre-analytical warnings for a novel class of biomarkers. Clin. Biochem.49(18), 1331–1339 (2016).
  • Becker N , LockwoodCM. Pre-analytical variables in miRNA analysis. Clin. Biochem.46(10–11), 861–868 (2013).
  • Witwer KW . Circulating MicroRNA biomarker studies: pitfalls and potential solutions. Clin. Chem.61(1), 56–63 (2015).
  • Berry SJ , CoffeyDS , WalshPC , EwingLL. The development of human benign prostatic hyperplasia with age. J. Urol.132(3), 474–479 (1984).
  • Haj-Ahmad TA , AbdallaMAK , Haj-AhmadY. Potential urinary miRNA biomarker candidates for the accurate detection of prostate cancer among benign prostatic Hyperplasia patients. J. Cancer5(3), 182–191 (2014).
  • Al-Rekabi A . MicroRNA 1825 up-regulation for discrimination prostate cancer versus benign prostatic hyperplasia patients. J. Pharm. Sci. Res.10(8), 1885–1889 (2018).
  • Ghorbanmehr N , GharbiS , KorschingE , TavallaeiM , EinollahiB , MowlaSJ. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine – promising biomarkers for the identification of prostate and bladder cancer. Prostate79(1), 88–95 (2019).
  • Al-Kafaji G , SaidHM , AlamMA , AlNaieb ZT. Blood-based microRNAs as diagnostic biomarkers to discriminate localized prostate cancer from benign prostatic hyperplasia and allow cancer-risk stratification. Oncol. Lett.16(1), 1357–1365 (2018).
  • Mello-Grand M , GregnaninI , SacchettoLet al. Circulating microRNAs combined with PSA for accurate and non-invasive prostate cancer detection. Carcinogenesis40(2), 246–253 (2018).
  • De Souza MF , KuasneH , Barros-FilhoMDCet al. Circulating mRNAs and miRNAs as candidate markers for the diagnosis and prognosis of prostate cancer. PLoS ONE12(9), e0184094 (2017).
  • Foj L , FerrerF , SerraMet al. Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate77(6), 573–583 (2017).
  • Xu Y , QinS , AnT , TangY , HuangY , ZhengL. MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. Prostate77(10), 1167–1175 (2017).
  • Korzeniewski N , TosevG , PahernikS , HadaschikB , HohenfellnerM , DuensingS. Identification of cell-free microRNAs in the urine of patients with prostate cancer. Urol. Oncol. Semin. Orig. Investig.33(1), 16.e17–16.e22 (2015).
  • Bryant RJ , PawlowskiT , CattoJWFet al. Changes in circulating microRNA levels associated with prostate cancer. Br. J. Cancer106(4), 768–774 (2012).
  • Cheng HH , MitchellPS , KrohEMet al. Circulating microRNA profiling identifies a subset of metastatic prostate cancer patients with evidence of cancer-associated hypoxia. PLoS ONE8(7), e69239 (2013).
  • Chen ZH , ZhangGL , LiHRet al. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate72(13), 1443–1452 (2012).
  • Zedan AH , HansenTF , AssenholtJ , PleckaitisM , MadsenJS , OstherPJS. MicroRNA expression in tumour tissue and plasma in patients with newly diagnosed metastatic prostate cancer. Tumor Biol.40(5), 1–11 (2018).
  • Guo X , HanT , HuPet al. Five microRNAs in serum as potential biomarkers for prostate cancer risk assessment and therapeutic intervention. Int. Urol. Nephrol.50(12), 2193–2200 (2018).
  • Egidi MG , CochettiG , ServaMRet al. Circulating microRNAs and kallikreins before and after radical prostatectomy: are they really prostate cancer markers? Biomed Res. Int. 2013, 1–11 (2013).
  • Porzycki P , CiszkowiczE , SemikM , TyrkaM. Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition. Int. Urol. Nephrol.50(9), 1619–1626 (2018).
  • Catto JWF , AlcarazA , BjartellASet al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur. Urol.59(5), 671–681 (2011).
  • Trionfini P , BenigniA , RemuzziG. MicroRNAs in kidney physiology and disease. Nat. Rev. Nephrol.11(1), 23–33 (2015).
  • Dybos SA , FlatbergA , HalgunsetJet al. Increased levels of serum miR-148a-3p are associated with prostate cancer. APMIS126(9), 722–731 (2018).
  • Daniel R , WuQ , WilliamsV , ClarkG , GuruliG , ZehnerZ. A panel of microRNAs as diagnostic biomarkers for the identification of prostate cancer. Int. J. Mol. Sci.18(6), 1281–1309 (2017).
  • Srivastava A , GoldbergerH , DimtchevAet al. Circulatory miR-628-5p is downregulated in prostate cancer patients. Tumor Biol.35(5), 4867–4873 (2014).
  • Matin F , JeetV , MoyaLet al. A plasma biomarker panel of four microRNAs for the diagnosis of prostate cancer. Sci. Rep.8, 6653 (2018).
  • Lieb V , WeigeltK , ScheinostLet al. Serum levels of miR-320 family members are associated with clinical parameters and diagnosis in prostate cancer patients. Oncotarget9(12), 10402–10416 (2017).
  • Hao X-K , LiZ , MaY-Yet al. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco. Targets. Ther.9, 139–148 (2016).
  • Dyson G , FarranB , BoltonSet al. The extrema of circulating miR-17 are identified as biomarkers for aggressive prostate cancer. Am. J. Cancer Res.8(10), 2088–2095 (2018).
  • Farran B , DysonG , CraigDet al. A study of circulating microRNAs identifies a new potential biomarker panel to distinguish aggressive prostate cancer. Carcinogenesis39(4), 556–561 (2018).
  • McDonald AC , ViraM , ShenJet al. Circulating microRNAs in plasma as potential biomarkers for the early detection of prostate cancer. Prostate78(6), 411–418 (2018).
  • Zhu C , HouX , ZhuJ , JiangC , WeiW. Expression of miR-30c and miR-29b in prostate cancer and its diagnostic significance. Oncol. Lett.16(3), 3140–3144 (2018).
  • Huang Z , ZhangL , YiX , YuX. Diagnostic and prognostic values of tissue hsa-miR-30c and hsa-miR-203 in prostate carcinoma. Tumor Biol.37(4), 4359–4365 (2016).
  • Calin GA , CroceCM. MicroRNA signatures in human cancers. Nat. Rev. Cancer6(11), 857–866 (2006).
  • Li E , JiP , OuyangNet al. Differential expression of miRNAs in colon cancer between African and Caucasian Americans: implications for cancer racial health disparities. Int. J. Oncol.45(2), 587–594 (2014).
  • Huang RS , GamazonER , ZiliakDet al. Population differences in microRNA expression and biological implications. RNA Biol.8(4), 692–701 (2011).
  • Josson S , SungSY , LaoK , ChungLWK , JohnstonePAS. Radiation modulation of microRNA in prostate cancer cell lines. Prostate68(15), 1599–1606 (2008).
  • Li B , ShiXB , NoriDet al. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate71(6), 567–574 (2011).
  • Templin T , PaulS , AmundsonSAet al. Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys.80(2), 549–557 (2011).
  • Zoni E , KarkampounaS , ThalmannGN , Kruithof-deJulio M , SpahnM. Emerging aspects of microRNA interaction with TMPRSS2-ERG and endocrine therapy. Mol. Cell. Endocrinol.462, 9–16 (2018).
  • Lin HM , CastilloL , MahonKLet al. Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer. Br. J. Cancer110(10), 2462–2471 (2014).
  • Jacob NK , CooleyJ V , YeeTNet al. Identification of sensitive serum microRNA biomarkers for radiation biodosimetry. PLoS ONE8(2), e57603 (2013).
  • Someya M , YamamotoH , NojimaMet al. Relation between Ku80 and microRNA-99a expression and late rectal bleeding after radiotherapy for prostate cancer. Radiother. Oncol.115(2), 235–239 (2015).
  • Ni J , BucciJ , ChangL , MaloufD , GrahamP , LiY. Targeting microRNAs in prostate cancer radiotherapy. Theranostics7(13), 3243–3259 (2017).
  • Amorim M , LoboJ , Fontes-SousaMet al. Predictive and prognostic value of selected microRNAs in luminal breast cancer. Front. Genet.10, 815 (2019).
  • Slotta-Huspenina J , DrecollE , FeithMet al. MicroRNA expression profiling for the prediction of resistance to neoadjuvant radiochemotherapy in squamous cell carcinoma of the esophagus. J. Transl. Med.16(1), 109 (2018).
  • Di Cosimo S , AppiertoV , PizzamiglioSet al. Plasma miRNA levels for predicting therapeutic response to neoadjuvant treatment in HER2-positive breast cancer: results from the NeoALTTO trial. Clin. Cancer Res.25(13), 3887–3895 (2019).
  • Marzi MJ , MontaniF , CarlettiRMet al. Optimization and standardization of circulating microRNA detection for clinical application: the miR-test case. Clin. Chem.62(5), 743–754 (2016).
  • Wang K , YuanY , ChoJH , McClartyS , BaxterD , GalasDJ. Comparing the microRNA spectrum between serum and plasma. PLoS ONE7(7), e41561 (2012).
  • Shiotsu H , OkadaK , ShibutaTet al. The influence of pre-analytical factors on the analysis of circulating microRNA. MicroRNA7(3), 195–203 (2018).
  • Ferracin M , LupiniL , SalamonIet al. Absolute quantification of cell-free microRNAs in cancer patients. Oncotarget6(16), 14545–14555 (2015).
  • Max KEA , BertramK , AkatKMet al. Human plasma and serum extracellular small RNA reference profiles and their clinical utility. Proc. Natl Acad. Sci. USA115(23), E5334–E5343 (2018).
  • Binderup HG , MadsenJS , HeegaardNHH , HoulindK , AndersenRF , BrasenCL. Quantification of microRNA levels in plasma – impact of preanalytical and analytical conditions. PLoS ONE13(7), e0201069 (2018).
  • Glinge C , ClaussS , BoddumKet al. Stability of circulating blood-based microRNAs-pre-analytic methodological considerations. PLoS ONE12(2), e0167969 (2017).
  • Grasedieck S , SchölerN , BommerMet al. Impact of serum storage conditions on microRNA stability. Leukemia26(11), 2414–2416 (2012).
  • Gilad S , MeiriE , YogevYet al. Serum microRNAs are promising novel biomarkers. PLoS ONE3(9), e3148 (2008).
  • Kelly B , MillerN , SweeneyKet al. A circulating microRNA signature as a biomarker for prostate cancer in a high risk group. J. Clin. Med.4(7), 1369–1379 (2015).
  • Nguyen HCN , XieW , YangMet al. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate73(4), 346–354 (2013).
  • Wach S , Al-JanabiO , WeigeltKet al. The combined serum levels of miR-375 and urokinase plasminogen activator receptor are suggested as diagnostic and prognostic biomarkers in prostate cancer. Int. J. Cancer137(6), 1406–1416 (2015).
  • Moltzahn F , OlshenAB , BaehnerLet al. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res.71(2), 550–560 (2011).
  • Westermann AM , SchmidtD , HoldenriederSet al. Serum microRNAs as biomarkers in patients undergoing prostate biopsy: results from a prospective multi-center study. Anticancer Res.34(2), 665–670 (2014).
  • Brase JC , JohannesM , SchlommTet al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int. J. Cancer128(3), 608–616 (2011).
  • Haldrup C , KosakaN , OchiyaTet al. Profiling of circulating microRNAs for prostate cancer biomarker discovery. Drug Deliv. Transl. Res.4(1), 19–30 (2014).
  • Mihelich BL , MaranvilleJC , NolleyR , PeehlDM , NonnL. Elevated serum microRNA levels associate with absence of high-grade prostate cancer in a retrospective cohort. PLoS ONE10(4), e0124245 (2015).
  • Mahn R , HeukampLC , RogenhoferS , Von RueckerA , MüllerSC , EllingerJ. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology77(5), 1265–1265 (2011).
  • Balzano F , DeianaM , GiudiciSDet al. MiRNA stability in frozen plasma samples. Molecules20(10), 19030–19040 (2015).
  • Rounge TB , LauritzenM , LangsethH , EnerlyE , LyleR , GislefossRE. MicroRNA biomarker discovery and high-throughput DNA sequencing are possible using long-term archived serum samples. Cancer Epidemiol. Biomark. Prev.24(9), 1381–1387 (2015).
  • Ge Q , ZhouY , LuJ , BaiY , XieX , LuZ. MiRNA in plasma exosome is stable under different storage conditions. Molecules19(2), 1568–1575 (2014).
  • Stuopelyte K , DaniunaiteK , BakaviciusA , LazutkaJR , JankeviciusF , JarmalaiteS. The utility of urine-circulating miRNAs for detection of prostate cancer. Br. J. Cancer115(6), 707–715 (2016).
  • Mall C , RockeDM , Durbin-JohnsonB , WeissRH. Stability of miRNA in human urine supports its biomarker potential. Biomark. Med.7(4), 623–631 (2013).
  • Liu Y , GaoG , YangCet al. Stability of miR-126 in urine and its potential as a biomarker for renal endothelial injury with diabetic nephropathy. Int. J. Endocrinol.2014, 393109 (2014).
  • Lv LL , CaoY , LiuDet al. Isolation and quantification of microRNAs from urinary exosomes/microvesicles for biomarker discovery. Int. J. Biol. Sci.9(10), 1021–1031 (2013).
  • Rodríguez M , Bajo-SantosC , HessvikNPet al. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol. Cancer.16(1), 156 (2017).
  • Pellegrini KL , PatilD , DouglasKJSet al. Detection of prostate cancer-specific transcripts in extracellular vesicles isolated from post-DRE urine. Prostate77(9), 990–999 (2017).
  • Zavesky L , JandakovaE , TurynaR , LangmeierovaL , WeinbergerV , MinarL. Supernatant versus exosomal urinary microRNAs. Two fractions with different outcomes in gynaecological cancers. Neoplasma63(1), 121–132 (2016).
  • Endzelinš E , BergerA , MelneVet al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer17(1), 730 (2017).
  • Chevillet JR , KangQ , RufIKet al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc. Natl Acad. Sci. USA111(41), 14888–14893 (2014).
  • Huang X , YuanT , LiangMet al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur. Urol.67(1), 33–41 (2015).
  • Bhagirath D , YangTL , BucayNet al. microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res.78(7), 1833–1844 (2018).
  • Xi Y , NakajimaG , GavinEet al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA13(10), 1668–1674 (2007).
  • Meng W , McElroyJP , VoliniaSet al. Comparison of microRNA deep sequencing of matched formalin-fixed paraffin-embedded and fresh frozen cancer tissues. PLoS ONE8(5), e64393 (2013).
  • Peskoe SB , BarberJR , ZhengQet al. Differential long-term stability of microRNAs and RNU6B snRNA in 12–20 year old archived formalin-fixed paraffin-embedded specimens. BMC Cancer17(1), 32 (2017).
  • Szafranska AE , DavisonTS , ShingaraJet al. Accurate molecular characterization of formalin-fixed, paraffin-embedded tissues by microRNA expression profiling. J. Mol. Diagn.10(5), 415–423 (2008).
  • Siebolts U , VamholtH , DrebberU , DienesHP , WickenhauserC , OdenthalM. Tissues from routine pathology archives are suitable for microRNA analyses by quantitative PCR. J. Clin. Pathol.62(1), 84–88 (2009).
  • Zheng Q , PeskoeSB , RibasJet al. Investigation of miR-21, miR-141, and miR-221 expression levels in prostate adenocarcinoma for associated risk of recurrence after radical prostatectomy. Prostate74(16), 1655–1662 (2014).
  • Peiró-Chova L , Peña-ChiletM , López-GuerreroJAet al. High stability of microRNAs in tissue samples of compromised quality. Virchows Arch.463(6), 765–774 (2013).
  • Kakimoto Y , TanakaM , KamiguchiH , OchiaiE , OsawaM. MicroRNA stability in FFPE tissue samples: dependence on gc content. PLoS ONE11(9), e0163125 (2016).
  • Leite KRM , CanavezJMS , ReisSTet al. MiRNA analysis of prostate cancer by quantitative real time PCR: comparison between formalin-fixed paraffin embedded and fresh-frozen tissue. Urol. Oncol. Semin. Orig. Investig.29(5), 533–537 (2011).
  • Nonn L , VaishnavA , GallagherL , GannPH. mRNA and micro-RNA expression analysis in laser-capture microdissected prostate biopsies: valuable tool for risk assessment and prevention trials. Exp. Mol. Pathol.88(1), 45–51 (2010).
  • Walter BA , ValeraVA , PintoPA , MerinoMJ. Comprehensive microRNA profiling of prostate cancer. J. Cancer4(5), 350–357 (2013).
  • Yfantis HG , CroceCM , HoweTMet al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res.68(15), 6162–6170 (2008).
  • Carlsson J , DavidssonS , HeleniusGet al. A miRNA expression signature that separates between normal and malignant prostate tissues. Cancer Cell Int.11(1), 14 (2011).
  • Guo T , WangXX , FuH , TangYC , MengBQ , ChenCH. Early diagnostic role of PSA combined miR-155 detection in prostate cancer. Eur. Rev. Med. Pharmacol. Sci.22(6), 1615–1621 (2018).
  • Schaefer A , JungM , MollenkopfHJet al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int. J. Cancer126(5), 1166–1176 (2010).
  • Hart M , NolteE , WachSet al. Comparative microRNA profiling of prostate carcinomas with increasing tumor stage by deep sequencing. Mol. Cancer Res.12(2), 250–263 (2013).
  • Kurul NO , AtesF , YilmazI , NarliG , YesildalC , SenkulT. The association of let-7c, miR-21, miR-145, miR-182, and miR-221 with clinicopathologic parameters of prostate cancer in patients diagnosed with low-risk disease. Prostate9(10), 1125–1132 (2019).
  • Grassi A , PerilliL , AlbertoniLet al. A coordinate deregulation of microRNAs expressed in mucosa adjacent to tumor predicts relapse after resection in localized colon cancer. Mol. Cancer17(1), 17 (2018).
  • Raudenska M , SztalmachovaM , GumulecJet al. Prognostic significance of the tumour-adjacent tissue in head and neck cancers. Tumor Biol.36(12), 9929–9939 (2015).
  • Sanz-Pamplona R , BerenguerA , CorderoDet al. Aberrant gene expression in mucosa adjacent to tumor reveals a molecular crosstalk in colon cancer. Mol. Cancer13(1), 46 (2014).
  • Brunet-Vega A , PericayC , QuílezME , Ramírez-LázaroMJ , CalvetX , LarioS. Variability in microRNA recovery from plasma: comparison of five commercial kits. Anal. Biochem.488, 28–35 (2015).
  • Doleshal M , MagotraAA , ChoudhuryB , CannonBD , LabourierE , SzafranskaAE. Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn.10(3), 203–211 (2008).
  • Sourvinou IS , MarkouA , LianidouES. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J. Mol. Diagn.15(6), 827–834 (2013).
  • Kroh EM , ParkinRK , MitchellPS , TewariM. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods50(4), 298–301 (2010).
  • Sato F , TsuchiyaS , TerasawaK , TsujimotoG. Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS ONE4(5), e5540 (2009).
  • Ach RA , WangH , CurryB. Measuring microRNAs: comparisons of microarray and quantitative PCR measurements, and of different total RNA prep methods. BMC Biotechnol.8, 69 (2008).
  • Campomenosi P , GiniE , NoonanDMet al. A comparison between quantitative PCR and droplet digital PCR technologies for circulating microRNA quantification in human lung cancer. BMC Biotechnol.16(1), 60 (2016).
  • Kumar B , RosenbergAZ , ChoiSMet al. Cell-type specific expression of oncogenic and tumor suppressive microRNAs in the human prostate and prostate cancer. Sci. Rep.8(1), 7189 (2018).
  • Deo A , CarlssonJ , LindolfA. How to choose a normalization strategy for miRNA quantitative real-time (qPCR) arrays. J. Bioinform. Comput. Biol.9(06), 795–812 (2011).
  • Gevaert AB , WitvrouwenI , VrintsCJet al. MicroRNA profiling in plasma samples using qPCR arrays: recommendations for correct analysis and interpretation. PLoS One.13(2), e0193173 (2018).
  • Blondal T , JensbyNielsen S , BakerAet al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods59(1), S1–S6 (2013).
  • Kirschner MB , EdelmanJJB , KaoSCH , VallelyMP , Van ZandwijkN , ReidG. The impact of hemolysis on cell-free microRNA biomarkers. Front. Genet.4, 94 (2013).
  • Peltier HJ , LathamGJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA14(5), 844–852 (2008).
  • Marabita F , DeCandia P , TorriA , TegnérJ , AbrignaniS , RossiRL. Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. Brief. Bioinform.17(2), 204–212 (2016).
  • Witwer KW . Data submission and quality in microarray-based MicroRNA profiling. Clin. Chem.59(2), 392–400 (2013).
  • Baggerly K . More data, please. Clin. Chem.59(3), 459–461 (2013).