204
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Methylome-Wide Association Study of Central Adiposity Implicates Genes Involved in Immune and Endocrine Systems

ORCID Icon, , , , , , , , , , , , , , , , , , , , , , , , , , & show all
Pages 1483-1499 | Received 20 Sep 2019, Accepted 22 May 2020, Published online: 09 Sep 2020

References

  • Armstrong K . Genomics and health care disparities: the role of statistical discrimination. JAMA doi: 10.1001/2012.jama.10820 1–2 (2012).
  • Hertle E , StehouwerCD , Van GreevenbroekMM. The complement system in human cardiometabolic disease. Mol. Immunol.61(2), 135–148 (2014).
  • Klein S , AllisonDB , HeymsfieldSBet al. Waist circumference and cardiometabolic risk: a consensus statement from shaping America’s Health: Association for Weight Management and Obesity Prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Obesity (Silver Spring)15(5), 1061–1067 (2007).
  • Flegal KM , CarrollMD , KitBK , OgdenCL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA307(5), 491–497 (2012).
  • Stevens GA , SinghGM , LuYet al. National, regional, and global trends in adult overweight and obesity prevalences. Population Health Metrics10(1), 22 (2012).
  • Finucane MM , StevensGA , CowanMJet al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet377(9765), 557–567 (2011).
  • Shungin D , WinklerTW , Croteau-ChonkaDCet al. New genetic loci link adipose and insulin biology to body fat distribution. Nature518(7538), 187–196 (2015).
  • Green ED , GuyerMS. National Human Genome Research I. Charting a course for genomic medicine from base pairs to bedside. Nature470(7333), 204–213 (2011).
  • Carless MA , KulkarniH , KosMZet al. Genetic effects on DNA methylation and its potential relevance for obesity in Mexican Americans. PloS ONE8(9), e73950 (2013).
  • Keller M , KralischS , RohdeKet al. Global DNA methylation levels in human adipose tissue are related to fat distribution and glucose homeostasis. Diabetologia57(11), 2374–2383 (2014).
  • Demerath EW , GuanW , GroveMLet al. Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum. Mol. Genet.24(15), 4464–4479 (2015).
  • Meeks KaC , HennemanP , VenemaAet al. An epigenome-wide association study in whole blood of measures of adiposity among Ghanaians: the RODAM study. Clin Epigenetics9, 103 (2017).
  • Ali O , CerjakD , KentJWJret al. Methylation of SOCS3 is inversely associated with metabolic syndrome in an epigenome-wide association study of obesity. Epigenetics11(9), 699–707 (2016).
  • Drong AW , LindgrenCM , MccarthyMI. The genetic and epigenetic basis of Type 2 diabetes and obesity. Clin. Pharmacol. Ther.92(6), 707–715 (2012).
  • Mamtani M , KulkarniH , DyerTDet al. Genome- and epigenome-wide association study of hypertriglyceridemic waist in Mexican American families. Clin Epigenetics8, 6 (2016).
  • Aslibekyan S , DemerathEW , MendelsonMet al. Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring)23(7), 1493–1501 (2015).
  • Aric Investigators . The Atherosclerosis Risk in Communities (ARIC) Study: Design and Objectives. Am. J. Epidemiol.129(4), 687–702 (1989).
  • Teschendorff AE , MarabitaF , LechnerMet al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics29(2), 189–196 (2013).
  • Wu MC , JoubertBR , KuanPFet al. A systematic assessment of normalization approaches for the Infinium 450K methylation platform. Epigenetics9(2), 318–329 (2014).
  • Chen YA , LemireM , ChoufaniSet al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics8(2), 203–209 (2013).
  • Houseman EA , AccomandoWP , KoestlerDCet al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics13, 86 (2012).
  • Mahmood SS , LevyD , VasanRS , WangTJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet383(9921), 999–1008 (2014).
  • Anderson GL , MansonJ , WallaceRet al. Implementation of the Women’s Health Initiative study design. Ann. Epidemiol.13(Suppl. 9), S5–S17 (2003).
  • Johnson WE , LiC , RabinovicA. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics8(1), 118–127 (2007).
  • Winkler TW , KutalikZ , GorskiM , LottazC , KronenbergF , HeidIM. EasyStrata: evaluation and visualization of stratified genome-wide association meta-analysis data. Bioinformatics31(2), 259–261 (2015).
  • Newnham JP , EvansSF , MichaelCA , StanleyFJ , LandauLI. Effects of frequent ultrasound during pregnancy: a randomised controlled trial. Lancet342(8876), 887–891 (1993).
  • Straker L , MountainJ , JacquesAet al. Cohort Profile: The Western Australian Pregnancy Cohort (Raine) Study-Generation 2. Int. J. Epidemiol.46(5), 1384–1385j (2017).
  • Huang RC , BurrowsS , MoriTA , OddyWH , BeilinLJ. Lifecourse adiposity and blood pressure between birth and 17 years old. Am. J. Hypertens.28(8), 1056–1063 (2015).
  • Buniello A , MacarthurJaL , CerezoMet al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res.47(D1), D1005–D1012 (2019).
  • Wahl S , DrongA , LehneBet al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature541(7635), 81–86 (2017).
  • Mendelson MM , MarioniRE , JoehanesRet al. Association of body mass index with DNA methylation and gene expression in blood cells and relations to cardiometabolic disease: a Mendelian randomization approach. PLoS Med14(1), e1002215 (2017).
  • Sayols-Baixeras S , SubiranaI , Fernandez-SanlesAet al. DNA methylation and obesity traits: an epigenome-wide association study. The REGICOR study. Epigenetics12(10), 909–916 (2017).
  • Wilson LE , HarlidS , XuZ , SandlerDP , TaylorJA. An epigenome-wide study of body mass index and DNA methylation in blood using participants from the Sister Study cohort. Int. J. Obes. (Lond)41(1), 194–199 (2017).
  • Dhana K , BraunKVE , NanoJet al. An epigenome-wide association study of obesity-related traits. Am. J. Epidemiol.187(8), 1662–1669 (2018).
  • Xu K , ZhangX , WangZ , HuY , SinhaR. Epigenome-wide association analysis revealed that SOCS3 methylation influences the effect of cumulative stress on obesity. Biol. Psychol.131, 63–71 (2018).
  • Dick KJ , NelsonCP , TsaprouniLet al. DNA methylation and body-mass index: a genome-wide analysis. Lancet383(9933), 1990–1998 (2014).
  • Wang X , PanY , ZhuHet al. An epigenome-wide study of obesity in African American youth and young adults: novel findings, replication in neutrophils, and relationship with gene expression. Clin. Epigenetics10, 3 (2018).
  • Van Iterson M , Van ZwetEW , ConsortiumB , HeijmansBT. Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution. Genome Biol.18(1), 19 (2017).
  • The NHGRI-EBI Catalog of published genome-wide association studies. www.ebi.ac.uk/gwas
  • Walaszczyk E , LuijtenM , SpijkermanAMWet al. DNA methylation markers associated with type 2 diabetes, fasting glucose and HbA1c levels: a systematic review and replication in a case-control sample of the Lifelines study. Diabetologia61(2), 354–368 (2018).
  • Chambers JC , LohM , LehneBet al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident Type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol.3(7), 526–534 (2015).
  • Kulkarni H , KosMZ , NearyJet al. Novel epigenetic determinants of Type 2 diabetes in Mexican-American families. Hum. Mol. Genet.24(18), 5330–5344 (2015).
  • Kriebel J , HerderC , RathmannWet al. Association between DNA methylation in whole blood and measures of glucose metabolism: KORA F4 Study. PLoS ONE11(3), e0152314 (2016).
  • Wu J , ZhangR , ShenFet al. Altered DNA methylation sites in peripheral blood leukocytes from patients with simple steatosis and nonalcoholic steatohepatitis (NASH). Med. Sci. Monit.24, 6946–6967 (2018).
  • Richard MA , HuanT , LigthartSet al. DNA methylation analysis identifies loci for blood pressure regulation. Am. J. Hum. Genet.101(6), 888–902 (2017).
  • Dekkers KF , Van ItersonM , SliekerRCet al. Blood lipids influence DNA methylation in circulating cells. Genome Biol.17(1), 138 (2016).
  • Petersen AK , ZeilingerS , KastenmullerGet al. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum. Mol. Genet.23(2), 534–545 (2014).
  • Tobi EW , SliekerRC , LuijkRet al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci. Adv.4(1), eaao4364 (2018).
  • Gtex Consortium . Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science348(6235), 648–660 (2015).
  • Ferre P , FoufelleF. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes. Metab.12(Suppl. 2), S83–S92 (2010).
  • Eberle D , HegartyB , BossardP , FerreP , FoufelleF. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie86(11), 839–848 (2004).
  • Pfeiffer L , WahlS , PillingLCet al. DNA methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc. Genet.8(2), 334–342 (2015).
  • Ono K . A novel link between plasma microRNA-33b levels and lipid disorders in diabetes mellitus. J. Atheroscler. Thromb.23(11), 1259–1260 (2016).
  • Kimura Y , TamasawaN , MatsumuraKet al. Clinical significance of determining plasma microRNA33b in Type 2 diabetic patients with dyslipidemia. J. Atheroscler. Thromb.23(11), 1276–1285 (2016).
  • Meeks KaC , HennemanP , VenemaAet al. Epigenome-wide association study in whole blood on Type 2 diabetes among sub-Saharan African individuals: findings from the RODAM study. Int. J. Epidemiol. doi:10.1093/ije/dyy171 (2018).
  • Klarin D , DamrauerSM , ChoKet al. Genetics of blood lipids among ∼300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet.50(11), 1514–1523 (2018).
  • Ligthart S , VaezA , HsuYHet al. Bivariate genome-wide association study identifies novel pleiotropic loci for lipids and inflammation. BMC Genom.17, 443 (2016).
  • Liu Y , DingJ , ReynoldsLMet al. Methylomics of gene expression in human monocytes. Hum. Mol. Genet.22(24), 5065–5074 (2013).
  • Sharma G , HuC , BrigmanJL , ZhuG , HathawayHJ , ProssnitzER. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state. Endocrinology154(11), 4136–4145 (2013).
  • Lindsey SH , ChappellMC. Evidence that the G protein-coupled membrane receptor GPR30 contributes to the cardiovascular actions of estrogen. Gend. Med.8(6), 343–354 (2011).
  • Ford J , HajibeigiA , LongMet al. GPR30 deficiency causes increased bone mass, mineralization, and growth plate proliferative activity in male mice. J. Bone Miner. Res.26(2), 298–307 (2011).
  • Xu H , QinS , CarrascoGAet al. Extra-nuclear estrogen receptor GPR30 regulates serotonin function in rat hypothalamus. Neuroscience158(4), 1599–1607 (2009).
  • Aslibekyan S , DoAN , XuHet al. CPT1A methylation is associated with plasma adiponectin. Nutr. Metab. Cardiovasc. Dis.27(3), 225–233 (2017).
  • Irvin MR , ZhiD , JoehanesRet al. Epigenome-wide association study of fasting blood lipids in the Genetics of Lipid-lowering Drugs and Diet Network study. Circulation130(7), 565–572 (2014).
  • Braun KVE , DhanaK , DeVries PSet al. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin. Epigenetics9, 15 (2017).
  • Frazier-Wood AC , AslibekyanS , AbsherDMet al. Methylation at CPT1A locus is associated with lipoprotein subfraction profiles. J. Lipid Res.55(7), 1324–1330 (2014).
  • Virmani A , PintoL , BauermannOet al. The Carnitine Palmitoyl Transferase (CPT) system and possible relevance for neuropsychiatric and neurological conditions. Mol. Neurobiol.52(2), 826–836 (2015).
  • Jernberg JN , BowmanCE , WolfgangMJ , ScafidiS. Developmental regulation and localization of carnitine palmitoyltransferases (CPTs) in rat brain. J. Neurochem.142(3), 407–419 (2017).
  • Qu Q , ZengF , LiuX , WangQJ , DengF. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis.7, e2226 (2016).
  • Skotte L , KochA , YakimovVet al. CPT1A missense mutation associated with fatty acid metabolism and reduced height in Greenlanders. Circ. Cardiovasc. Genet.10(3), e001618 (2017).
  • Akinyemiju T , DoAN , PatkiAet al. Epigenome-wide association study of metabolic syndrome in African-American adults. Clin. Epigenetics10, 49 (2018).
  • Dayeh T , TuomiT , AlmgrenPet al. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk. Epigenetics11(7), 482–488 (2016).
  • Ding J , ReynoldsLM , ZellerTet al. Alterations of a cellular cholesterol metabolism network are a molecular feature of obesity-related Type 2 diabetes and cardiovascular disease. Diabetes64(10), 3464–3474 (2015).
  • Guo Q , ZhengR , HuangJet al. Using integrative analysis of DNA methylation and gene expression data in multiple tissue types to prioritize candidate genes for drug development in obesity. Front Genet9, 663 (2018).
  • Zaghlool SB , Mook-KanamoriDO , KaderSet al. Deep molecular phenotypes link complex disorders and physiological insult to CpG methylation. Hum. Mol. Genet.27(6), 1106–1121 (2018).
  • Sladewski TE , KrementsovaEB , TrybusKM. Myosin Vc is specialized for transport on a secretory superhighway. Curr. Biol.26(16), 2202–2207 (2016).
  • Gunther LK , FurutaK , BaoJet al. Coupling of two non-processive myosin 5c dimers enables processive stepping along actin filaments. Sci. Rep.4, 4907 (2014).
  • Sun Y , ChiuTT , FoleyKP , BilanPJ , KlipA. Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells. Mol. Biol. Cell25(7), 1159–1170 (2014).
  • Arner P , SinhaI , ThorellA , RydenM , Dahlman-WrightK , DahlmanI. The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women. Clin. Epigenetics7, 93 (2015).
  • Duan B , DavisR , SadatELet al. Distinct roles of adenylyl cyclase VII in regulating the immune responses in mice. J. Immunol.185(1), 335–344 (2010).
  • Jiang LI , CollinsJ , DavisR , FraserID , SternweisPC. Regulation of cAMP responses by the G12/13 pathway converges on adenylyl cyclase VII. J. Biol. Chem.283(34), 23429–23439 (2008).
  • Liang J , LeTH , EdwardsDRVet al. Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations. PLoS Genet.13(5), e1006728 (2017).
  • Kichaev G , BhatiaG , LohPRet al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet.104(1), 65–75 (2019).
  • Surendran P , DrenosF , YoungRet al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet.48(10), 1151–1161 (2016).
  • Horikoshi M , BeaumontRN , DayFRet al. Genome-wide associations for birth weight and correlations with adult disease. Nature538(7624), 248–252 (2016).
  • Astle WJ , EldingH , JiangTet al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell167(5), 1415–1429.e1419 (2016).
  • Schultess J , DanielewskiO , SmolenskiAP. Rap1GAP2 is a new GTPase-activating protein of Rap1 expressed in human platelets. Blood105(8), 3185–3192 (2005).
  • Neumuller O , HoffmeisterM , BabicaJ , PrelleC , GegenbauerK , SmolenskiAP. Synaptotagmin-like protein 1 interacts with the GTPase-activating protein Rap1GAP2 and regulates dense granule secretion in platelets. Blood114(7), 1396–1404 (2009).
  • Ghosh S , DentR , HarperME , GormanSA , StuartJS , McphersonR. Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity. BMC Med. Genomics3, 56 (2010).
  • Ling C , RonnT. Epigenetics in human obesity and Type 2 diabetes. Cell Metab.29(5), 1028–1044 (2019).
  • Heyn H , EstellerM. DNA methylation profiling in the clinic: applications and challenges. Nat. Rev. Genet.13(10), 679–692 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.