3,796
Views
0
CrossRef citations to date
0
Altmetric
Editorial

A New Era for Epigenetic Epidemiology

&
Pages 1647-1649 | Received 24 Sep 2019, Accepted 07 Oct 2019, Published online: 15 Nov 2019

References

  • Dor Y , CedarH. Principles of DNA methylation and their implications for biology and medicine. Lancet392(10149), 777–786 (2018).
  • Jablonka E . Epigenetic epidemiology. Int. J. Epidemiol.33(5), 929–935 (2004).
  • Waterland RA , MichelsKB. Epigenetic epidemiology of the developmental origins hypothesis. Annu. Rev. Nutr.27, 363–388 (2007).
  • Viana J , HannonE , DempsterEet al. Schizophrenia-associated methylomic variation: molecular signatures of disease and polygenic risk burden across multiple brain regions. Hum. Mol. Genet.26(1), 210–225 (2017).
  • Wang L , FuX , PengXet al. DNA Methylation Profiling Reveals Correlation of Differential Methylation Patterns with Gene Expression in Human Epilepsy. J. Mol. Neurosci.59(1), 68–77 (2016).
  • Young JI , SivasankaranSK , WangLet al. Genome-wide brain DNA methylation analysis suggests epigenetic reprogramming in Parkinson disease. Neurol. Genet.5(4), e342 (2019).
  • Bibikova M , BarnesB , TsanCet al. High density DNA methylation array with single CpG site resolution. Genomics98(4), 288–295 (2011).
  • Lokk K , ModhukurV , RajashekarBet al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol.15(4), r54 (2014).
  • Pidsley R , ZotenkoE , PetersTJet al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol.17(1), 208 (2016).
  • Grundberg E , MeduriE , SandlingJKet al. Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements. Am. J. Hum. Genet.93(5), 876–890 (2013).
  • Hannon E , LunnonK , SchalkwykL , MillJ. Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics10(11), 1024–1032 (2015).
  • Zaimi I , PeiD , KoestlerDCet al. Variation in DNA methylation of human blood over a 1-year period using the Illumina MethylationEPIC array. Epigenetics13(10-11), 1056–1071 (2018).
  • Silver MJ , KesslerNJ , HennigBJet al. Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome Biol.16, 118 (2015).
  • Waterland RA , KellermayerR , LaritskyEet al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet.6(12), e1001252 (2010).
  • Gunasekara CJ , ScottCA , LaritskyEet al. A genomic atlas of systemic interindividual epigenetic variation in humans. Genome Biol.20(1), 105 (2019).
  • Kessler NJ , WaterlandRA , PrenticeAM , SilverMJ. Establishment of environmentally sensitive DNA methylation states in the very early human embryo. Sci. Adv.4(7), eaat2624 (2018).
  • Rakyan VK , BlewittME , DrukerR , PreisJI , WhitelawE. Metastable epialleles in mammals. Trends Genet.18(7), 348–351 (2002).
  • Liu D , ZhaoL , WangZet al. EWASdb: epigenome-wide association study database. Nucleic Acids Res.47(D1), D989–D993 (2019).
  • Sanchez-Mut JV , HeynH , SilvaBAet al. PM20D1 is a quantitative trait locus associated with Alzheimer’s disease. Nat. Med.24(5), 598–603 (2018).
  • Dall’aglio L , MukaT , CecilCAMet al. The role of epigenetic modifications in neurodevelopmental disorders: A systematic review. Neurosci. Biobehav. Rev.94, 17–30 (2018).
  • Zhu Y , MordauntCE , YasuiDHet al. Placental DNA methylation levels at CYP2E1 and IRS2 are associated with child outcome in a prospective autism study. Hum. Mol. Genet.28(16), 2659–2674 (2019).
  • Yang Y , WuL , ShuXOet al. Genetically predicted levels of DNA methylation biomarkers and breast cancer risk: data from 228,951 women of European descent. J. Natl Cancer Inst. doi:10.1093/jnci/djz109 (2019).
  • Gonseth S , ShawGM , RoyRet al. Epigenomic profiling of newborns with isolated orofacial clefts reveals widespread DNA methylation changes and implicates metastable epiallele regions in disease risk. Epigenetics14(2), 198–213 (2019).
  • Kuhnen P , HandkeD , WaterlandRAet al. Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity. Cell Metab.24(3), 502–509 (2016).
  • Mok A , RheadB , HolingueCet al. Hypomethylation of CYP2E1 and DUSP22 promoters associated with disease activity and erosive disease among rheumatoid arthritispatients. Arthritis Rheumatol.70(4), 528–536 (2018).
  • Boks MP , HoutepenLC , XuZet al. Genetic vulnerability to DUSP22 promoter hypermethylation is involved in the relation betweenin utero famine exposure and schizophrenia. NPJ Schizophr.4(1), 16 (2018).
  • Van Baak TE , CoarfaC , DuguePAet al. Epigenetic supersimilarity of monozygotic twin pairs. Genome Biol.19(1), 2 (2018).
  • Van Dijk SJ , PetersTJ , BuckleyMet al. DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood. Int. J. Obes. (Lond.)42(1), 28–35 (2018).
  • Dominguez-Salas P , MooreSE , BakerMSet al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat. Commun.5, 3746 (2014).
  • Estill MS , BolnickJM , WaterlandRA , BolnickAD , DiamondMP , KrawetzSA. Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in bloodspots of newborn infants. Fertil. Steril.106(3), 629–639 (2016).
  • Waterland RA , GarzaC. Potential mechanisms of metabolic imprinting that lead to chronic disease. Am. J. Clin. Nutr.69(2), 179–197 (1999).