61
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fusaric Acid-Induced Epigenetic Modulation of Hepatic H3K9me3 Triggers Apoptosis in Vitro and in Vivo

, , & ORCID Icon
Pages 955-972 | Received 25 Sep 2019, Accepted 26 Mar 2020, Published online: 07 Aug 2020

References

  • Zain ME . Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc.15(2), 129–144 (2011).
  • Streit E , SchwabC , SulyokM , NaehrerK , KrskaR , SchatzmayrG. Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins5(3), 504–523 (2013).
  • Chen Z , LuoQ , WangM , ChenB. A rapid method with UPLC for the determination of fusaric acid in Fusarium strains and commercial food and feed products. Indian J. Med. Microbiol.57(1), 68–74 (2017).
  • Ghazi T , NagiahS , NaidooP , ChuturgoonAA. Fusaric acid induced promoter methylation of DNA methyltransferases triggers DNA hypomethylation in human hepatocellular carcinoma (HepG2) cells. Epigenetics14(8), 804–817 (2019).
  • Bacon CW , PorterJK , NorredWP. Toxic interaction of fumonisin B1 and fusaric acid measured by injection into fertile chicken egg. Mycopathologia129(1), 29–35 (1995).
  • Fairchild A , GrimesJ , PorterJ , CroomJr W , DanielL , HaglerJr W. Effects of diacetoxyscirpenol and fusaric acid on poults: individual and combined effects of dietary diacetoxyscirpenol and fusaric acid on turkey poult performance. Int. J. Poult. Sci.4(3), 350–355 (2005).
  • Smith TK , McMillanEG , CastilloJB. Effect of feeding blends of Fusarium mycotoxin-contaminated grains containing deoxynivalenol and fusaric acid on growth and feed consumption of immature swine. J. Anim. Sci.75(8), 2184–2191 (1997).
  • Singh VK , SinghHB , UpadhyayRS. Role of fusaric acid in the development of ‘Fusarium wilt’ symptoms in tomato: physiological, biochemical and proteomic perspectives. Plant Physiol. Biochem.118, 320–332 (2017).
  • Abdul NS , NagiahS , ChuturgoonAA. Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) cells. Toxicon119, 336–344 (2016).
  • Ghazi T , NagiahS , TilokeC , AbdulNS , ChuturgoonAA. Fusaric acid induces DNA damage and post-translational modifications of p53 in human hepatocellular carcinoma (HepG2) cells. J. Cell. Biochem.118(11), 3866–3874 (2017).
  • Dhani S , NagiahS , NaidooDB , ChuturgoonAA. Fusaric acid immunotoxicity and MAPK activation in normal peripheral blood mononuclear cells and Thp-1 cells. Sci. Rep.7(3051), 1–10 (2017).
  • Li X , ZhangZL , WangHF. Fusaric acid (FA) protects heart failure induced by isoproterenol (ISP) in mice through fibrosis prevention via TGF-β1/SMADs and PI3K/AKT signaling pathways. Biomed. Pharmacother.93, 130–145 (2017).
  • Reddy R , LarsonC , BrimerG , FrappierB , ReddyC. Developmental toxic effects of fusaric acid in CD1 mice. Bull. Environ. Contam. Toxicol.57(3), 354–360 (1996).
  • Devaraja S , GirishKS , SanthoshMS , HemshekharM , NayakaSC , KemparajuK. Fusaric acid a mycotoxin and its influence on blood coagulation and platelet function. Blood Coagul. Fibrinolysis24(4), 419–423 (2013).
  • Hidaka H , NagatsuT , TakeyaKet al. Fusaric acid, a hypotensive agent produced by fungi. J. Antibiot.22(5), 228–230 (1969).
  • Terasawa F , KameyamaM. The clinical trial of a new hypotensive agent, “fusaric acid (5-butylpicolinic acid)”: the preliminary report. Japanese Circ. J.35(3), 339–357 (1971).
  • Smith T , MacDonaldE. Effect of fusaric acid on brain regional neurochemistry and vomiting behavior in swine. J. Anim. Sci.69(5), 2044–2049 (1991).
  • Yin ES , RakhmankulovaM , KuceraKet al. Fusaric acid induces a notochord malformation in zebrafish via copper chelation. Biometals28(4), 783–789 (2015).
  • Winter J , JungS , KellerS , GregoryRI , DiederichesS. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol.11(3), 228–234 (2009).
  • Eades G , YaoY , YangM , ZhangY , ChumsriS , ZhouQ. MiR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J. Biol. Chem.286(29), 25992–26002 (2011).
  • Mateescu B , BatistaL , CardonMet al. MiR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat. Med.17(12), 1627–1636 (2011).
  • Eades G , YangM , YaoY , ZhangY , ZhouQ. MiR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J. Biol. Chem.286(47), 40725–40733 (2011).
  • Wang B , KohP , WinbanksCet al. MiR-200a prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes60(1), 280–287 (2011).
  • Uhlmann S , ZhangJ , SchwägerAet al. MiR-200bc/429 cluster targets PLCγ1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene29(30), 4297–4306 (2010).
  • Gregory PA , BertAG , PatersonELet al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol.10(5), 593–601 (2008).
  • Korpal M , LeeES , HuG , KangY. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem.283(22), 14910–14914 (2008).
  • Li A , OmuraN , HongSMet al. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res.70(13), 5226–5237 (2010).
  • Xia H , NgSS , JiangSet al. MiR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem. Biophys. Res. Commun.391(1), 535–541 (2010).
  • Saydam O , ShenY , WürdingerTet al. Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/β-catenin signaling pathway. Mol. Cell. Biol.29(21), 5923–5940 (2009).
  • Cong N , DuP , ZhangAet al. Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/β-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol. Rep.29(4), 1579–1587 (2013).
  • Zhang T , BerrocalJG , FrizzellKMet al. Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters. J. Biol. Chem.284(30), 20408–20417 (2009).
  • Vaquero A , ScherM , LeeD , Erdjument-BromageH , TempstP , ReinbergD. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell16(1), 93–105 (2004).
  • Bosch-Presegué L , Raurell-VilaH , Marazuela-DuqueAet al. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol. Cell42(2), 210–223 (2011).
  • Vaute O , NicolasE , VandelL , TroucheD. Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res.30(2), 475–481 (2002).
  • Watson G , WickramasekaraS , Palomera-SanchezZet al. SUV39H1/H3K9me3 attenuates sulforaphane-induced apoptotic signaling in PC3 prostate cancer cells. Oncogenesis3(12), 1–9 (2014).
  • Peters AH , O’carrollD , ScherthanHet al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell107(3), 323–337 (2001).
  • Vaquero A , ScherM , Erdjument-BromageH , TempstP , SerranoL , ReinbergD. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature450(7168), 440–444 (2007).
  • Park JA , KimAJ , KangY , JungYJ , KimHK , KimKC. Deacetylation and methylation at histone H3 lysine 9 (H3K9) coordinate chromosome condensation during cell cycle progression. Mol. Cell31(4), 343–349 (2011).
  • Melcher M , SchmidM , AagaardL , SelenkoP , LaibleG , JenuweinT. Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation and mitotic progression. Mol. Cell. Biol.20(10), 3728–3741 (2000).
  • Reimann M , LeeS , LoddenkemperCet al. Tumor stroma-derived TGF-β limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell17(3), 262–272 (2010).
  • Chiba T , SaitoT , YukiKet al. Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma. Int. J. Cancer136(2), 289–298 (2015).
  • Livak KJ , SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods25(4), 402–408 (2001).
  • Feoktistova M , GeserickP , LeverkusM. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb. Protoc.2016(4), 343–346 (2016).
  • Mungamuri SK , QiaoRF , YaoS , ManfrediJJ , GuW , AaronsonSA. USP7 enforces heterochromatinization of p53 target promoters by protecting SUV39H1 from MDM2-mediated degradation. Cell Rep.14(11), 2528–2537 (2016).
  • Chuturgoon A , PhulukdareeA , MoodleyD. Fumonisin B1 induces global DNA hypomethylation in HepG2 cells–An alternative mechanism of action. Toxicology315, 65–69 (2014).
  • Sancak D , OzdenS. Global histone modifications in fumonisin B1 exposure in rat kidney epithelial cells. Toxicol. In Vitro29(7), 1809–1815 (2015).
  • Chuturgoon AA , PhulukdareeA , MoodleyD. Fumonisin B1 modulates expression of human cytochrome P450 1b1 in human hepatoma (Hepg2) cells by repressing Mir-27b. Toxicol. Lett.227(1), 50–55 (2014).
  • Demirel G , AlpertungaB , OzdenS. Role of fumonisin B1 on DNA methylation changes in rat kidney and liver cells. Pharm. Biol.53(9), 1302–1310 (2015).
  • So MY , TianZ , PhoonYSet al. Gene expression profile and toxic effects in human bronchial epithelial cells exposed to zearalenone. PLoS ONE9(5), e96404–e96422 (2014).
  • Zhu CC , HouJJ , HanJ , CuiXX , KimNH , SunSC. Zearalenone exposure affects epigenetic modifications of mouse eggs. Mutagenesis29(6), 489–495 (2014).
  • Mattson MP . Hormesis defined. Ageing Res. Rev.7(1), 1–7 (2008).
  • Yang JJ , TaoH , LiuLP , HuW , DengZY , LiJ. MiR-200a controls hepatic stellate cell activation and fibrosis via SIRT1/Notch1 signal pathway. Inflamm. Res.66(4), 341–352 (2017).
  • Zheng H , ChenL , PledgerWJ , FangJ , ChenJ. p53 promotes repair of heterochromatin DNA by regulating JMJD2b and SUV39H1 expression. Oncogene33(6), 734–744 (2014).
  • Ogata S , InoueK , IwataK , OkumuraK , TaguchiH. Apoptosis induced by picolinic acid-related compounds in HL-60 cells. Biosci. Biotechnol. Biochem.65(10), 2337–2339 (2001).
  • Stack Jr BC , HansenJP , RudaJM , JaglowskiJ , ShvidlerJ , HollenbeakCS. Fusaric acid: a novel agent and mechanism to treat HNSCC. Otolaryngol. Head Neck Surg.131(1), 54–60 (2004).
  • Fernandez-Pol J , KlosD , HamiltonP. Cytotoxic activity of fusaric acid on human adenocarcinoma cells in tissue culture. Anticancer Res.13(1), 57–64 (1993).
  • Mamur S , ÜnalF , YilmazS , ErikelE , YüzbaşioğluD. Evaluation of the cytotoxic and genotoxic effects of mycotoxin fusaric acid. Drug Chem. Toxicol.1–9 (2018).
  • Sun Y , JiangX , PriceBD. Tip60: connecting chromatin to DNA damage signaling. Cell Cycle9(5), 930–936 (2010).
  • Bosch-Presegué L , VaqueroA. Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J.282(9), 1745–1767 (2015).
  • Hengartner MO . The biochemistry of apoptosis. Nature407(6805), 770–776 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.