191
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Early Pregnancy Dyslipidemia is Associated with Placental DNA Methylation at Loci Relevant for Cardiometabolic Diseases

ORCID Icon, , , , , , & show all
Pages 921-934 | Received 04 Oct 2019, Accepted 07 Apr 2020, Published online: 17 Jul 2020

References

  • Kitajima M , OkaS , YasuhiI , FukudaM , RiiY , IshimaruT. Maternal serum triglyceride at 24–32 weeks’ gestation and newborn weight in nondiabetic women with positive diabetic screens. Obstet. Gynecol.97(5 Pt 1), 776–780 (2001).
  • Vrijkotte TG , AlgeraSJ , BrouwerIA , Van EijsdenM , TwicklerMB. Maternal triglyceride levels during early pregnancy are associated with birth weight and postnatal growth. J. Pediatr.159(5), 736–742 e731 (2011).
  • Vrijkotte TG , KrukzienerN , HuttenBA , VollebregtKC , Van EijsdenM , TwicklerMB. Maternal lipid profile during early pregnancy and pregnancy complications and outcomes: the ABCD study. J. Clin. Endocrinol. Metab.97(11), 3917–3925 (2012).
  • Clausen T , BurskiTK , OyenN , GodangK , BollerslevJ , HenriksenT. Maternal anthropometric and metabolic factors in the first half of pregnancy and risk of neonatal macrosomia in term pregnancies. a prospective study. Eur. J. Endocrinol.153(6), 887–894 (2005).
  • Nasioudis D , DoulaverisG , KanninenTT. Dyslipidemia in pregnancy and maternal-fetal outcome. Minerva Ginecol.71(2), 155–162 (2019).
  • Grantz KL , ElmiA , PughSJ , CatovJ , SjaardaL , AlbertPS. Maternal serum lipid trajectories and association with pregnancy loss and length of gestation. Am. J. Perinatol.10.1055/s-0039-1689000 (2019).
  • Van Der Graaf A , VissersMN , GaudetDet al. Dyslipidemia of mothers with familial hypercholesterolemia deteriorates lipids in adult offspring. Arterioscler. Thromb. Vasc. Biol.30(12), 2673–2677 (2010).
  • Napoli C , GlassCK , WitztumJL , DeutschR , D’armientoFP , PalinskiW. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: fate of Early Lesions in Children (FELIC) study. Lancet354(9186), 1234–1241 (1999).
  • Catalano PM . Obesity and pregnancy–the propagation of a viscous cycle?J. Clin. Endocrinol. Metab.88(8), 3505–3506 (2003).
  • Curhan GC , ChertowGM , WillettWCet al. Birth weight and adult hypertension and obesity in women. Circulation94(6), 1310–1315 (1996).
  • Samaras TT , ElrickH , StormsLH. Birthweight, rapid growth, cancer, and longevity: a review. J. Natl Med. Assoc.95(12), 1170–1183 (2003).
  • Pettitt DJ , JovanovicL. Birth weight as a predictor of type 2 diabetes mellitus: the U-shaped curve. Curr. Diab. Rep.1(1), 78–81 (2001).
  • Barker DJ . In utero programming of chronic disease. Clin. Sci. (London, England: 1979)95, 115–128 (1998).
  • Jansson T , PowellTL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin. Sci. (Lond.)113(1), 1–13 (2007).
  • Myatt L . Placental adaptive responses and fetal programming. J. Physiol.572(Pt 1), 25–30 (2006).
  • Zhang R , DongS , MaWWet al. Modulation of cholesterol transport by maternal hypercholesterolemia in human full-term placenta. PLoS One12(2), e0171934 (2017).
  • Shrestha D , WorkalemahuT , Tekola-AyeleF. Maternal dyslipidemia during early pregnancy and epigenetic ageing of the placenta. Epigenetics10.1080/15592294.2019.16292341-10(2019).
  • Dolinoy DC , WeidmanJR , JirtleRL. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod. Toxicol.23(3), 297–307 (2007).
  • Lesseur C , ChenJ. Adverse maternal metabolic intrauterine environment and placental epigenetics: implications for fetal metabolic programming. Curr. Environ. Health Rep.5(4), 531–543 (2018).
  • Houde AA , St-PierreJ , HivertMFet al. Placental lipoprotein lipase DNA methylation levels are associated with gestational diabetes mellitus and maternal and cord blood lipid profiles. J. Dev. Orig. Health Dis.5(2), 132–141 (2014).
  • Houde AA , GuaySP , DesgagneVet al. Adaptations of placental and cord blood ABCA1 DNA methylation profile to maternal metabolic status. Epigenetics8(12), 1289–1302 (2013).
  • Stefulj J , PanzenboeckU , BeckerTet al. Human endothelial cells of the placental barrier efficiently deliver cholesterol to the fetal circulation via ABCA1 and ABCG1. Circ. Res.104(5), 600–608 (2009).
  • Grewal J , GrantzKL , ZhangCet al. Cohort profile: NICHD fetal growth studies-singletons and twins. Int. J. Epidemiol.47(1), 25–25l (2018).
  • Bao W , DarS , ZhuYet al. Plasma concentrations of lipids during pregnancy and the risk of gestational diabetes mellitus: a longitudinal study. J. Diabetes10(6), 487–495 (2018).
  • Friedewald WT , LevyRI , FredricksonDS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem.18(6), 499–502 (1972).
  • Expert Panel on Detection E, Adults TOHBCI . Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA285(19), 2486–2497 (2001).
  • Delahaye F , DoC , KongYet al. Genetic variants influence on the placenta regulatory landscape. PLoS Genet.14(11), e1007785 (2018).
  • Tekola-Ayele F , WorkalemahuT , GorfuGet al. Sex differences in the associations of placental epigenetic aging with fetal growth. Aging (Albany NY)11(15), 5412–5432 (2019).
  • Du P , ZhangX , HuangCCet al. Comparison of beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics11, 587 (2010).
  • Horvath S . DNA methylation age of human tissues and cell types. Genome Biol.14(10), 3156 (2013).
  • Patro R , DuggalG , LoveMI , IrizarryRA , KingsfordC. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods14(4), 417 (2017).
  • Ritchie ME , PhipsonB , WuDet al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.43(7), e47 (2015).
  • Akalin A , KormakssonM , LiSet al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol.13(10), R87 (2012).
  • Venables WN , RipleyBD. Modern Applied Statistics with S. (Fourth Edition). Springer, NY, USA (2002).
  • Barfield RT , AlmliLM , KilaruVet al. Accounting for population stratification in DNA methylation studies. Genet. Epidemiol.38(3), 231–241 (2014).
  • Leek JT , StoreyJD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet.3(9), e161 (2007).
  • Maksimovic J , Gagnon-BartschJA , SpeedTP , OshlackA. Removing unwanted variation in a differential methylation analysis of Illumina HumanMethylation450 array data. Nucleic Acids Res.43(16), e106–e106 (2015).
  • Leek Jt JW , ParkerHS , FertigEJ , JaffeAE , StoreyJD , ZhangY , TorresLC. sva: Surrogate Variable Analysis. R package version 3.30.1. (2019).
  • Van Iterson M , Van ZwetEW , ConsortiumB , HeijmansBT. Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution. Genome Biol.18(1), 19 (2017).
  • Love MI , HuberW , AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15(12), 550 (2014).
  • Nica AC , DermitzakisET. Expression quantitative trait loci: present and future. Philos. Trans. R Soc. Lond. B Biol. Sci.368(1620), 20120362 (2013).
  • Gaunt TR , ShihabHA , HemaniGet al. Systematic identification of genetic influences on methylation across the human life course. Genome Biol.17, 61 (2016).
  • Watanabe K , TaskesenE , Van BochovenA , PosthumaD. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun.8(1), 1826 (2017).
  • Ward LD , KellisM. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res.40(D1), D930–D934 (2011).
  • Consortium G . The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science348(6235), 648–660 (2015).
  • Braun KVE , DhanaK , DeVries PSet al. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin. Epigenet9, 15 (2017).
  • Dekkers KF , Van ItersonM , SliekerRCet al. Blood lipids influence DNA methylation in circulating cells. Genome Biol.17(1), 138 (2016).
  • Hedman AK , MendelsonMM , MarioniREet al. Epigenetic patterns in blood associated with lipid traits predict incident coronary heart disease events and are enriched for results from genome-wide association studies. Circ. Cardiovasc. Genet.10(1), (2017).
  • Mamtani M , KulkarniH , DyerTDet al. Genome- and epigenome-wide association study of hypertriglyceridemic waist in Mexican American families. Clin. Epigenetics8, 6 (2016).
  • Pfeiffer L , WahlS , PillingLCet al. DNA methylation of lipid-related genes affects blood lipid levels. Circ. Cardiovasc. Genet.8(2), 334–342 (2015).
  • Sayols-Baixeras S , SubiranaI , Lluis-GanellaCet al. Identification and validation of seven new loci showing differential DNA methylation related to serum lipid profile: an epigenome-wide approach. The REGICOR study. Hum. Mol. Genet.25(20), 4556–4565 (2016).
  • Truong V , HuangS , DennisJet al. Blood triglyceride levels are associated with DNA methylation at the serine metabolism gene PHGDH. Sci. Rep.7(1), 11207 (2017).
  • Xie T , GorenjakV , MGSet al. Epigenome-wide association study (EWAS) of blood lipids in healthy population from STANISLAS Family Study (SFS). Int. J. Mol. Sci.20(5), pii: E1014 (2019).
  • Irvin MR , ZhiD , JoehanesRet al. Epigenome-wide association study of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study. Circulation130(7), 565–572 (2014).
  • Lai CQ , WojczynskiMK , ParnellLDet al. Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge. J. Lipid Res.57(12), 2200–2207 (2016).
  • Yen CL , FareseRVJr. MGAT2, a monoacylglycerol acyltransferase expressed in the small intestine. J. Biol. Chem.278(20), 18532–18537 (2003).
  • Schmidt S , WillersJ , StahlFet al. Regulation of lipid metabolism-related gene expression in whole blood cells of normo- and dyslipidemic men after fish oil supplementation. Lipids Health Dis.11, 172 (2012).
  • Willer CJ , SchmidtEM , SenguptaSet al. Discovery and refinement of loci associated with lipid levels. Nat. Genet.45(11), 1274–1283 (2013).
  • Shin SY , FaumanEB , PetersenAKet al. An atlas of genetic influences on human blood metabolites. Nat. Genet.46(6), 543–550 (2014).
  • Janssen U , StoffelW. Disruption of mitochondrial beta -oxidation of unsaturated fatty acids in the 3,2-trans-enoyl-CoA isomerase-deficient mouse. J. Biol. Chem.277(2), 19579–19584 (2002).
  • Persson B , KallbergY , BrayJEet al. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem. Biol. Interact.178(1–3), 94–98 (2009).
  • Cravatt BF , DemarestK , PatricelliMPet al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl Acad. Sci. USA.98(16), 9371–9376 (2001).
  • Hubel C , GasparHA , ColemanJRIet al. Genomics of body fat percentage may contribute to sex bias in anorexia nervosa. Am. J. Med. Genet. B Neuropsychiatr. Genet.180(6), 428–438 (2019).
  • Kichaev G , BhatiaG , LohPRet al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet.104(1), 65–75 (2019).
  • He J , KellyTN , ZhaoQet al. Genome-wide association study identifies 8 novel loci associated with blood pressure responses to interventions in Han Chinese. Circ. Cardiovasc. Genet.6(6), 598–607 (2013).
  • Hoffmann TJ , ChoquetH , YinJet al. A large multiethnic genome-wide association study of adult body mass index identifies novel loci. Genetics210(2), 499–515 (2018).
  • Justice AE , WinklerTW , FeitosaMFet al. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nat. Commun.8, 14977 (2017).
  • Winkler TW , JusticeAE , GraffMet al. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet.11(10), e1005378 (2015).
  • Berndt SI , GustafssonS , MagiRet al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet.45(5), 501–512 (2013).
  • Takeuchi F , AkiyamaM , MatobaNet al. Interethnic analyses of blood pressure loci in populations of East Asian and European descent. Nat. Commun.9(1), 5052 (2018).
  • Hernandez DG , SingletonAB. Using DNA methylation to understand biological consequences of genetic variability. Neurodegener. Dis.9(2), 53–59 (2012).
  • Bertola DR , RodriguesMG , QuaioCR , KimCA , Passos-BuenoMR. Vertical transmission of a frontonasal phenotype caused by a novel ALX4 mutation. Am. J. Med. Genet. A161A(3), 600–604 (2013).
  • Farhan SM , WangJ , RobinsonJFet al. Old gene, new phenotype: mutations in heparan sulfate synthesis enzyme, EXT2 leads to seizure and developmental disorder, no exostoses. J. Med. Genet.52(10), 666–675 (2015).
  • Lai HM , ChenCJ , SuBYet al. Gout and type 2 diabetes have a mutual inter-dependent effect on genetic risk factors and higher incidences. Rheumatology (Oxford)51(4), 715–720 (2012).
  • Gadad BS , RajP , JhaMKet al. Association of novel ALX4 gene polymorphisms with antidepressant treatment response: findings from the CO-MED trial. Mol. Neuropsychiatry4(1), 7–19 (2018).
  • Sladek R , RocheleauG , RungJet al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature445(7130), 881–885 (2007).
  • Drenos F , TalmudPJ , CasasJPet al. Integrated associations of genotypes with multiple blood biomarkers linked to coronary heart disease risk. Hum. Mol. Genet.18(12), 2305–2316 (2009).
  • Guay SP , LegareC , HoudeAA , MathieuP , BosseY , BouchardL. Acetylsalicylic acid, aging and coronary artery disease are associated with ABCA1 DNA methylation in men. Clin. Epigenetics6(1), 14 (2014).
  • Irvin MR , AslibekyanS , HidalgoB , ArnettD. CPT1A: the future of heart disease detection and personalized medicine?Clin. Lipidol.9(1), 9–12 (2014).
  • Klucken J , BuchlerC , OrsoEet al. ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc. Natl Acad. Sci. USA97(2), 817–822 (2000).
  • Osborne TF . CREating a SCAP-less liver keeps SREBPs pinned in the ER membrane and prevents increased lipid synthesis in response to low cholesterol and high insulin. Genes Dev.15(15), 1873–1878 (2001).
  • Law SW , LacknerKJ , HospattankarAVet al. Human apolipoprotein B-100: cloning, analysis of liver mRNA, and assignment of the gene to chromosome 2. Proc. Natl Acad. Sci. USA82(24), 8340–8344 (1985).
  • Tarrade A , PanchenkoP , JunienC , GaboryA. Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J. Exp. Biol.218(1), 50–58 (2015).
  • Julian CG , PedersenBS , SalmonCSet al. Unique DNA methylation patterns in offspring of hypertensive pregnancy. Clin. Transl. Sci.8(6), 740–745 (2015).
  • Herrera E , Ortega-SenovillaH. Lipid metabolism during pregnancy and its implications for fetal growth. Curr. Pharm. Biotechnol.15(1), 24–31 (2014).
  • Grimes SB , WildR. Effect of pregnancy on lipid metabolism and lipoprotein levels. In: Endotext. FeingoldKR, AnawaltB, BoyceAet al.et al. ( Eds). MD Text.com Inc, MA, USA (2000). www.ncbi.nlm.nih.gov/books/NBK498654/
  • La Frano MR , CarmichaelSL , MaCet al. Impact of post-collection freezing delay on the reliability of serum metabolomics in samples reflecting the California mid-term pregnancy biobank. Metabolomics14(11), 151 (2018).
  • Tirado-Magallanes R , RebbaniK , LimR , PradhanS , BenoukrafT. Whole genome DNA methylation: beyond genes silencing. Oncotarget8(3), 5629–5637 (2017).
  • Barfield RT , AlmliLM , KilaruVet al. Accounting for population stratification in DNA methylation studies. Genet. Epidemiol.38(3), 231–241 (2014).
  • Dhana K , BraunKVE , NanoJet al. An epigenome-wide association study of obesity-related traits. Am. J. Epidemiol.187(8), 1662–1669 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.