2,236
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Epigenomic Programming in Early Fetal Brain Development

, , , , , , , , , , , , , , , , , , , , , & ORCID Icon show all
Pages 1053-1070 | Received 25 Oct 2019, Accepted 19 Mar 2020, Published online: 17 Jul 2020

References

  • Llorens-Bobadilla E , ZhaoS , BaserA , Saiz-CastroG , ZwadloK , Martin-VillalbaA. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell17(3), 329–340 (2015).
  • Luo Y , CoskunV , LiangAet al. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell161(5), 1175–1186 (2015).
  • Darmanis S , SloanSA , ZhangYet al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci.112(23), 7285–7290 (2015).
  • Prajapati B , FatmaM , MaddhesiyaPet al. Identification and epigenetic analysis of divergent long non-coding RNAs in multilineage differentiation of human neural progenitor cells. RNA Biol.16(1), 13–24 (2019).
  • Zhu Y , SousaAMM , GaoTet al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science362(6420), (2018). 10.1126/science.aat8077
  • Ziller MJ , EdriR , YaffeYet al. Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature doi:10.1038/nature13990 (2014) ( Epub ahead of print).
  • Lister R , MukamelEA , NeryJRet al. Global epigenomic reconfiguration during mammalian brain development. Science341(6146), 1237905 (2013).
  • Numata S , YeT , HydeTMet al. DNA methylation signatures in development and aging of the human prefrontal cortex. Am. J. Hum. Genet.90(2), 260–272 (2012).
  • Siegmund KD , ConnorCM , CampanMet al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS ONE2(9), e895 (2007).
  • Amiri A , CoppolaG , ScuderiSet al. Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science362(6420),10.1126/science.aat6720 (2018).
  • Stiles J , JerniganTL. The basics of brain development. Neuropsychol. Rev.20(4), 327–348 (2010).
  • Kang HJ , KawasawaYI , ChengFet al. Spatio-temporal transcriptome of the human brain. Nature478(7370), 483–489 (2011).
  • Spiers H , HannonE , SchalkwykLCet al. Methylomic trajectories across human fetal brain development. Genome Res.25(3), 338–352 (2015).
  • Kundaje A , MeulemanW , ErnstJet al. Integrative analysis of 111 reference human epigenomes. Nature518(7539), 317–330 (2015).
  • Reynolds BA , WeissS. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol.175(1), 1–13 (1996).
  • Lavdas AA , GrigoriouM , PachnisV , ParnavelasJG. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci.19(18), 7881–7888 (1999).
  • Ulfig N . Ganglionic eminence of the human fetal brain–new vistas. Anat. Rec.267(3), 191–195 (2002).
  • Florio M , HuttnerWB. Neural progenitors, neurogenesis and the evolution of the neocortex. Development141(11), 2182–2194 (2014).
  • Götz M , HuttnerWB. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol.6(10), 777–788 (2005).
  • Hansen DV , LuiJH , ParkerPRL , KriegsteinAR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature464(7288), 554–561 (2010).
  • Betizeau M , CortayV , PattiDet al. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron80(2), 442–457 (2013).
  • Gascard P , BilenkyM , SigaroudiniaMet al. Epigenetic and transcriptional determinants of the human breast. Nat. Commun.6, 6351 (2015).
  • Raineri E , DabadM , HeathS. A note on exact differences between beta distributions in genomic (methylation) studies. PLoS ONE9(5), e97349 (2014).
  • Li H . A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics27(21), 2987–2993 (2011).
  • Heinz S , BennerC , SpannNet al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell38(4), 576–589 (2010).
  • Shannon P , MarkielA , OzierOet al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13(11), 2498–2504 (2003).
  • Stunnenberg HG , HirstM. The International Human Epigenome Consortium: a blueprint for scientific collaboration and discovery. Cell167(7), 1897 (2016).
  • Kleinman CL , GergesN , Papillon-CavanaghSet al. Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nat. Genet.46(1), 39–44 (2014).
  • Morin RD , JohnsonNA , SeversonTMet al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet.42(2), 181–185 (2010).
  • Heintzman ND , StuartRK , HonGet al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet.39(3), 311–318 (2007).
  • Thaler JP , LeeS-K , JurataLW , GillGN , PfaffSL. LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions. Cell110(2), 237–249 (2002).
  • Lu QR , ParkJK , NollEet al. Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors. Proc. Natl Acad. Sci.98(19), 10851–10856 (2001).
  • Bouvier C , BartoliC , Aguirre-CruzLet al. Shared oligodendrocyte lineage gene expression in gliomas and oligodendrocyte progenitor cells. J. Neurosurg.99(2), 344–350 (2003).
  • Jakovcevski I , ZecevicN. Olig transcription factors are expressed in oligodendrocyte and neuronal cells in human fetal CNS. J. Neurosci.25(44), 10064–10073 (2005).
  • Rivera FJ , Couillard-DespresS , PedreXet al. Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells24(10), 2209–2219 (2006).
  • Cai J , ChenY , CaiW-Het al. A crucial role for Olig2 in white matter astrocyte development. Development134(10), 1887–1899 (2007).
  • Zhou Q , ChoiG , AndersonDJ. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2. 2. Neuron31(5), 791–807 (2001).
  • Li D , ZhangB , XingX , WangT. Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation. Methods72, 29–40 (2015).
  • Beck S . Taking the measure of the methylome. Nat. Biotechnol.28(10), 1026–1028 (2010).
  • Nadarajah B , ParnavelasJG. Modes of neuronal migration in the developing cerebral cortex. Nat. Rev. Neurosci.3(6), 423–432 (2002).
  • Rutka JT , SmithSL. Transfection of human astrocytoma cells with glial fibrillary acidic protein complementary DNA: analysis of expression, proliferation, and tumorigenicity. Cancer Res.53(15), 3624–3631 (1993).
  • Rodriguez D , GauthierF , BertiniEet al. Infantile Alexander disease: spectrum of GFAP mutations and genotype-phenotype correlation. Am. J. Hum. Genet.69(5), 1134–1140 (2001).
  • Zhao W , BianX-W , ShiJ-Q , JiangX-F. Effects of ectopic glial fibrillary acidic protein/green fluorescent protein gene expression on cellular differentiation and proliferation of human glioma cell line. Zhonghua Bing Li Xue Za Zhi33(5), 449–453 (2004).
  • Campbell CE , PiperM , PlachezCet al. The transcription factor Nfix is essential for normal brain development. BMC Dev. Biol.8, 52 (2008).
  • Mason S , PiperM , GronostajskiRM , RichardsLJ. Nuclear factor one transcription factors in CNS development. Mol. Neurobiol.39(1), 10–23 (2009).
  • Shimizu T , HibiM. Formation and patterning of the forebrain and olfactory system by zinc-finger genes Fezf1 and Fezf2. Dev. Growth Differ.51(3), 221–231 (2009).
  • Acampora D , BaroneP , SimeoneA. Otx genes in corticogenesis and brain development. Cereb. Cortex9(6), 533–542 (1999).
  • Hallonet M , HollemannT , PielerT , GrussP. Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system. Genes Dev.13(23), 3106–3114 (1999).
  • Waddington CH . Canalization of development and the inheritance of acquired characters. Nature150, 563–565 (1942).
  • Zhou J , LiH , LiXet al. The roles of Cdk5-mediated subcellular localization of FOXO1 in neuronal death. J. Neurosci.35(6), 2624–2635 (2015).
  • Zuloaga DG , PutsDA , JordanCL , BreedloveSM. The role of androgen receptors in the masculinization of brain and behavior: what we’ve learned from the testicular feminization mutation. Horm. Behav.53(5), 613–626 (2008).
  • Feldmann A , IvanekR , MurrR , GaidatzisD , BurgerL , SchübelerD. Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions. PLoS Genet.9(12), e1003994 (2013).
  • Egea J , KleinR. Bidirectional Eph–ephrin signaling during axon guidance. Trends Cell Biol.17(5), 230–238 (2007).
  • Hamasaki T , GotoS , NishikawaS , UshioY. A role of netrin-1 in the formation of the subcortical structure striatum: repulsive action on the migration of late-born striatal neurons. J. Neurosci.21(12), 4272–4280 (2001).
  • Kennedy TE . Cellular mechanisms of netrin function: long-range and short-range actions. Biochem. Cell Biol.78(5), 569–575 (2000).
  • Hu H . Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron23(4), 703–711 (1999).
  • Huang DW , ShermanBT , LempickiRA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc.4(1), 44–57 (2009).
  • Hunter CS , RhodesSJ. LIM-homeodomain genes in mammalian development and human disease. Mol. Biol. Rep.32(2), 67–77 (2005).
  • Blakely BD , ByeCR , FernandoCVet al. Wnt5a regulates midbrain dopaminergic axon growth and guidance. PLoS ONE6(3), e18373 (2011).
  • Silvestri C , NarimatsuM , Von BothIet al. Genome-wide identification of Smad/Foxh1 targets reveals a role for Foxh1 in retinoic acid regulation and forebrain development. Dev. Cell14(3), 411–423 (2008).
  • Mclean CY , BristorD , HillerMet al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol.28(5), 495–501 (2010).
  • Malaterre J , RamsayRG , MantamadiotisT. Wnt-Frizzled signalling and the many paths to neural development and adult brain homeostasis. Front. Biosci.12, 492–506 (2007).
  • Sandberg CJ , AltschulerG , JeongJet al. Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt- signaling and a fingerprint associated with clinical outcome. Exp. Cell Res.319(14), 2230–2243 (2013).
  • Tiberi L , VanDen Ameele J , DimidschsteinJet al. BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat. Neurosci.15(12), 1627–1635 (2012).
  • Miller JA , DingS-L , SunkinSMet al. Transcriptional landscape of the prenatal human brain. Nature508(7495), 199 (2014).
  • Kriegstein AR , NoctorSC. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci.27(7), 392–399 (2004).
  • Gressens P . Mechanisms and disturbances of neuronal migration. Pediatr. Res.48(6), 725–730 (2000).
  • Biondi A , NogueiraH , DormontDet al. Are the brains of monozygotic twins similar? A three-dimensional MR study. Am. J. Neuroradiol.19(7), 1361–1367 (1998).
  • Steinmetz H , HerzogA , SchlaugG , HuangY , JänckeL. Brain (A) symmetry in monozygotic twins. Cereb. Cortex5(4), 296–300 (1995).
  • Cavanna AE , SteccoA , RickardsHet al. Corpus callosum abnormalities in Tourette syndrome: an MRI-DTI study of monozygotic twins. J. Neurol. Neurosurg. Psychiatry81(5), 533–535 (2010).
  • Lévesque ML , CaseyKF , SzyfMet al. Genome-wide DNA methylation variability in adolescent monozygotic twins followed since birth. Epigenetics9(10), 1410–1421 (2014).
  • Weksberg R , ShumanC , CaluseriuOet al. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum. Mol. Genet.11(11), 1317–1325 (2002).
  • Singh SM , MurphyB , O’reillyR. Epigenetic contributors to the discordance of monozygotic twins. Clin. Genet.62(2), 97–103 (2002).
  • Townsend GC , RichardsL , HughesT , PinkertonS , SchwerdtW. Epigenetic influences may explain dental differences in monozygotic twin pairs. Aust. Dent. J.50(2), 95–100 (2005).
  • Galetzka D , HansmannT , ElHajj Net al. Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer. Epigenetics7(1), 47–54 (2012).
  • Fraga MF , BallestarE , PazMFet al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci.102(30), 10604–10609 (2005).