164
Views
0
CrossRef citations to date
0
Altmetric
Research Article

hsa_circ_0001947 Suppresses Acute Myeloid Leukemia Progression Via Targeting hsa-miR-329-5p/CREBRF axis

, , , , , , & ORCID Icon show all
Pages 935-953 | Received 21 Nov 2019, Accepted 16 Apr 2020, Published online: 13 Jul 2020

References

  • Benard B , GentlesAJ , KöhnkeT , MajetiR , ThomasD. Data mining for mutation-specific targets in acute myeloid leukemia. Leukemia33(4), 826–843 (2019).
  • Jia B , ZhaoC , RakszawskiKLet al. Eomes+ T-below CD8+ T cells are functionally impaired and are associated with poor clinical outcome in patients with acute myeloid leukemia. Cancer research79(7), 1635–1645 (2019).
  • Memczak S , JensM , ElefsiniotiAet al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature495(7441), 333 (2013).
  • Wang PL , BaoY , YeeMCet al. Circular RNA is expressed across the eukaryotic tree of life. PLoS ONE9(3), e90859 (2014).
  • Ye CY , ChenL , LiuC , ZhuQH , FanL. Widespread noncoding circular RNA s in plants. New Phytol.208(1), 88–95 (2015).
  • Arnaiz E , SoleC , ManterolaL , IparraguirreL , OtaeguiD , LawrieCH. CircRNAs and cancer: biomarkers and master regulators. In: Seminars in Cancer Biology. Mallardo, PoltronieriP, FarooqiA ( Eds). Academic Press, 58, 90–99 (2019).
  • Chen X , ChenRX , WeiWSet al. PRMT5 circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging miR-30c to induce epithelial–mesenchymal transition. Clin. Cancer Res.24(24), 6319–6330 (2018).
  • Yu J , XuQG , WangZGet al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J. Hepatol.68(6), 1214–1227 (2018).
  • Lasda E , ParkerR. Circular RNAs: diversity of form and function. RNA20(12), 1829–1842 (2014).
  • Barrett SP , WangPL , SalzmanJ. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife4, e07540 (2015).
  • Preußer C , HungLH , SchneiderTet al. Selective release of circRNAs in platelet-derived extracellular vesicles. J. Extracell. Vesicles7(1), 1424473 (2018).
  • Ashwal-Fluss R , MeyerM , PamudurtiNRet al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell56(1), 55–66 (2014).
  • Greene J , BairdAM , BradyLet al. Circular RNAs: biogenesis, function and role in human diseases. Front. Mol. Biosci.4, 38 (2017).
  • Hansen TB , JensenTI , ClausenBHet al. Natural RNA circles function as efficient microRNA sponges. Nature495(7441), 384 (2013).
  • Li Z , HuangC , BaoCet al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol.22(3), 256 (2015).
  • Pamudurti NR , BartokO , JensMet al. Translation of circRNAs. Mol.cell66(1), 9–21.e7 (2017).
  • Xu JZ , ShaoCC , WangXJet al. circTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axis. Cell Death Dis.10(3), 175 (2019).
  • Rong D , LuC , ZhangBet al. CircPSMC3 suppresses the proliferation and metastasis of gastric cancer by acting as a competitive endogenous RNA through sponging miR-296-5p. Mol. Cancer18(1), 25 (2019).
  • Du Q , HuB , FengYet al. circOMA1-mediated miR-145-5p suppresses tumor growth of nonfunctioning pituitary adenomas by targeting TPT1. J. Clin. Endocrinol. Metab.104(6), 2419–2434 (2019).
  • Ping L , JianJC , ChuSL , GuangHL , MingZ. Silencing of circ_0009910 inhibits acute myeloid leukemia cell growth through increasing miR-20a-5p. Blood Cells Mol. Dis.75, 41–47 (2019).
  • Li W , ZhongCQ , JiaoJet al. Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis. Int.J. Mol. Sci.18(3), 597 (2017).
  • Zheng Q , BaoC , GuoWet al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun.7, 11215 (2016).
  • Gao S , YuY , LiuL , MengJ , LiG. Circular RNA hsa_circ_0007059 restrains proliferation and epithelial-mesenchymal transition in lung cancer cells via inhibiting microRNA-378. Life Sci.116692 (2019).
  • Guan YJ , MaJY , SongW. Identification of circRNA–miRNA–mRNA regulatory network in gastric cancer by analysis of microarray data. Cancer Cell Int.19(1), 183 (2019).
  • Sticht C , DeLa Torre C , ParveenA , GretzN. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE13(10), e0206239 (2018).
  • Meng S , ZhouH , FengZet al. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol. Cancer16(1), 94 (2017).
  • Han D , LiJ , WangHet al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology66(4), 1151–1164 (2017).
  • Hanahan D , WeinbergRA. Hallmarks of cancer: the next generation. Cell144(5), 646–674 (2011).
  • Yang C , YuanW , YangXet al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol. Cancer17(1), 19 (2018).
  • Zeng K , ChenX , XuMet al. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell death Dis.9(4), 417 (2018).
  • Lü L , SunJ , ShiPet al. Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget8(27), 44096 (2017).
  • Xu L , FengX , HaoXet al. CircSETD3 (Hsa_circ_0000567) acts as a sponge for microRNA-421 inhibiting hepatocellular carcinoma growth. J. Exp. Clin. Cancer Res.38(1), 98 (2019).
  • Gecz J . The FMR2 gene, FRAXE and non-specific X-linked mental retardation: clinical and molecular aspects. Ann. Hum. Genet.64(2), 95–106 (2000).
  • Network CGA . Comprehensive molecular portraits of human breast tumours. Nature490(7418), 61 (2012).
  • Luo Z , LinC , GuestEet al. The super elongation complex family of RNA polymerase II elongation factors: gene target specificity and transcriptional output. Mol. Cell. Biol.32(13), 2608–2617 (2012).
  • Yu F , FuWM. Identification of differential splicing genes in gliomas using exon expression profiling. Mol. Med. Rep.11(2), 843–850 (2015).
  • Lin SP , YeS , LongYet al. Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem. Biophys. Res. Commun.471(1), 52–56 (2016).
  • Wong NKP , CheungH , SollyELet al. Exploring the roles of CREBRF and TRIM2 in the regulation of angiogenesis by high-density lipoproteins. Int. J. Mol.Sci.19(7), 1903 (2018).
  • Han J , ZhangL , ZhangJet al. CREBRF promotes the proliferation of human gastric cancer cells via the AKT signaling pathway. Cell.Mol. Biol. (Noisy-le-Grand, France)64(5), 40–45 (2018).
  • Xue H , ZhangJ , GuoXet al. CREBRF is a potent tumor suppressor of glioblastoma by blocking hypoxia-induced autophagy via the CREB3/ATG5 pathway. Int. J. Oncol.49(2), 519–528 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.