403
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dynamic Analysis of m6A Methylation Spectroscopy During Progression and Reversal of Hepatic Fibrosis

ORCID Icon, , , , , , , , , , , & show all
Pages 1707-1723 | Received 27 Nov 2019, Accepted 14 Aug 2020, Published online: 11 Nov 2020

References

  • Bataller R , BrennerDA. Liver fibrosis. J. Clin. Invest.115(2), 209–218 (2005).
  • Atta HM . Reversibility and heritability of liver fibrosis: implications for research and therapy. World J. Gastroenterol.21(17), 5138–5148 (2015).
  • Ellis EL , MannDA. Clinical evidence for the regression of liver fibrosis. J. Hepatol.56(5), 1171–1180 (2012).
  • Komatsu Y , WakuT , IwasakiN , OnoW , YamaguchiC , YanagisawaJ. Global analysis of DNA methylation in early-stage liver fibrosis. BMC Med. Genomics.5, 5 (2012).
  • Page A , MannDA. Epigenetic regulation of liver fibrosis. Clin. Res. Hepatol. Gastroenterol.39(Suppl. 1), S64–S68 (2015).
  • Iredale JP , BenyonRC , ArthurMJet al. Tissue inhibitor of metalloproteinase-1 messenger RNA expression is enhanced relative to interstitial collagenase messenger RNA in experimental liver injury and fibrosis. Hepatology24(1), 176–184 (1996).
  • Zeybel M , MannDA , MannJ. Epigenetic modifications as new targets for liver disease therapies. J. Hepatol.59(6), 1349–1353 (2013).
  • Fu Y , DominissiniD , RechaviG , HeC. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat. Rev. Genet.15(5), 293–306 (2014).
  • Strazzabosco M , FabrisL , AlbanoE. Osteopontin: a new player in regulating hepatic ductular reaction and hepatic progenitor cell responses during chronic liver injury. Gut63(11), 1693–1694 (2014).
  • Dowson C , O’reillyS. DNA methylation in fibrosis. Eur. J. Cell Biol.95(9), 323–330 (2016).
  • Oh BK , KimH , ParkHJet al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int. J. Mol. Med.20(1), 65–73 (2007).
  • Zeybel M , HardyT , WongYKet al. Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat. Med.18(9), 1369–1377 (2012).
  • Mann J , OakleyF , AkiboyeF , ElsharkawyA , ThorneAW , MannDA. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell. Death. Differ.14(2), 275–285 (2007).
  • Atta H , El-RehanyM , HammamOet al. Mutant MMP-9 and HGF gene transfer enhance resolution of CCl4-induced liver fibrosis in rats: role of ASH1 and EZH2 methyltransferases repression. PloS ONE9(11), e112384 (2014).
  • Perugorria MJ , WilsonCL , ZeybelMet al. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology56(3), 1129–1139 (2012).
  • Zhao BS , RoundtreeIA , HeC. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol.18(1), 31–42 (2017).
  • Dominissini D , Moshitch-MoshkovitzS , SchwartzSet al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature485(7397), 201–206 (2012).
  • He S , WangH , LiuRet al. mRNA N6-methyladenosine methylation of postnatal liver development in pig. PloS ONE12(3), e0173421 (2017).
  • Chen M , WeiL , LawCTet al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology67(6), 2254–2270 (2018).
  • Sun T , WuR , MingL. The role of m6A RNA methylation in cancer. Biomed. Pharmacother.112, 108613 (2019).
  • Lu N , LiX , YuJet al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m(6) A RNA methylation in piglets. Lipids53(1), 53–63 (2018).
  • Brocard M , RuggieriA , LockerN. m6A RNA methylation, a new hallmark in virus-host interactions. J. Gen. Virol.98(9), 2207–2214 (2017).
  • Chandola U , DasR , PandaB. Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease. Brief. Funct. genomics.14(3), 169–179 (2015).
  • Hesser CR , KarijolichJ , DominissiniD , HeC , GlaunsingerBA. N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi’s sarcoma-associated herpesvirus infection. PLoS Pathog.14(4), e1006995 (2018).
  • Mathiyalagan P , AdamiakM , MayourianJet al. FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation139(4), 518–532 (2019).
  • Iredale JP , BenyonRC , PickeringJet al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Invest.102(3), 538–549 (1998).
  • Luo Z , ZhangZ , TaiL , ZhangL , SunZ , ZhouL. Comprehensive analysis of differences of N(6)-methyladenosine RNA methylomes between high-fat-fed and normal mouse livers. Epigenomics11(11), 1267–1282 (2019).
  • Chen Y , ZhouC , SunY , HeX , XueD. mA RNA modification modulates gene expression and cancer-related pathways in clear cell renal cell carcinoma. Epigenomics12(2), 87–99 (2020).
  • Meyer KD , SaletoreY , ZumboP , ElementoO , MasonCE , JaffreySR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell149(7), 1635–1646 (2012).
  • Kechin A , BoyarskikhU , KelA , FilipenkoM. cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J. Comput. Biol.24(11), 1138–1143 (2017).
  • Kim D , LangmeadB , SalzbergSL. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods12(4), 357–360 (2015).
  • Tao X , ChenJ , JiangYet al. Transcriptome-wide N -methyladenosine methylome profiling of porcine muscle and adipose tissues reveals a potential mechanism for transcriptional regulation and differential methylation pattern. BMC Genomics18(1), 336 (2017).
  • Zhang Y , LiuT , MeyerCAet al. Model-based analysis of ChIP-Seq (MACS). Genome Biol.9(9), R137 (2008).
  • Shao Z , ZhangY , YuanG-C , OrkinSH , WaxmanDJ. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets. Genome Biol.13(3), R16 (2012).
  • Trapnell C , RobertsA , GoffLet al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc.7(3), 562–578 (2012).
  • Huang Da W , ShermanBT , LempickiRA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc.4(1), 44–57 (2009).
  • Wei CM , GershowitzA , MossB. 5′-Terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry15(2), 397–401 (1976).
  • Schibler U , KelleyDE , PerryRP. Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J. Mol. Biol.115(4), 695–714 (1977).
  • Luo GZ , MacqueenA , ZhengGet al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat. Commun.5, 5630 (2014).
  • Jia G , FuY , ZhaoXet al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol.7(12), 885–887 (2011).
  • Ma C , ChangM , LvHet al. RNA m(6)A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol.19(1), 68 (2018).
  • Bonis PA , FriedmanSL , KaplanMM. Is liver fibrosis reversible?N. Engl. J. Med.344(6), 452–454 (2001).
  • Zoubek ME , TrautweinC , StrnadP. Reversal of liver fibrosis: from fiction to reality. Best Pract. & Res. Clin. gastroenterol.31(2), 129–141 (2017).
  • Tao X , ChenJ , JiangYet al. Transcriptome-wide N (6) -methyladenosine methylome profiling of porcine muscle and adipose tissues reveals a potential mechanism for transcriptional regulation and differential methylation pattern. BMC Genomics18(1), 336 (2017).
  • Tao YY , YanXC , ZhouT , ShenL , LiuZL , LiuCH. Fuzheng Huayu recipe alleviates hepatic fibrosis via inhibiting TNF-alpha induced hepatocyte apoptosis. BMC Complement. Altern. Med.14, 449 (2014).
  • Krithika R , JyothilakshmiV , VermaRJ. Phyllanthin inhibits CCl4-mediated oxidative stress and hepatic fibrosis by down-regulating TNF-alpha/NF-kappaB, and pro-fibrotic factor TGF-beta1 mediating inflammatory signaling. Toxicol. Ind. Health.32(5), 953–960 (2016).
  • Delektorskaya VV , PerevoshchikovAG , GolovkovDA , KushlinskiiNE. Prognostic significance of expression of matrix metalloproteinase in colorectal adenocarcinomas and their metastases. Bull. Exp. Biolo. Med.143(4), 455–458 (2007).
  • Murphy G , WardR , HembryRM , ReynoldsJJ , KuhnK , TryggvasonK. Characterization of gelatinase from pig polymorphonuclear leucocytes. A metalloproteinase resembling tumour type IV collagenase. Biochem. J.258(2), 463–472 (1989).
  • Gong J , HanJ , HeJet al. Paired related homeobox protein 1 regulates PDGF-induced chemotaxis of hepatic stellate cells in liver fibrosis. Lab. Invest.97(9), 1020–1032 (2017).
  • Anania FA , PotterJJ , Rennie-TankersleyL , MezeyE. Effects of acetaldehyde on nuclear protein binding to the nuclear factor I consensus sequence in the alpha 2(I) collagen promoter. Hepatology21(6), 1640–1648 (1995).
  • Bai X , WuL , LiangTet al. Overexpression of myocyte enhancer factor 2 and histone hyperacetylation in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol.134(1), 83–91 (2008).
  • Xu F , LiuC , ZhouD , ZhangL. TGF-beta/SMAD pathway and its regulation in hepatic fibrosis. J. Histochem. Cytochem.64(3), 157–167 (2016).
  • Alegre F , PelegrinP , FeldsteinAE. Inflammasomes in Liver Fibrosis. Semin. Liver Dis.37(2), 119–127 (2017).
  • Kang HH , KimIK , LeeHIet al. Chronic intermittent hypoxia induces liver fibrosis in mice with diet-induced obesity via TLR4/MyD88/MAPK/NF-kB signaling pathways. Biochem. Biophys. Res. Commun.490(2), 349–355 (2017).
  • Maity A , DasB. N6-methyladenosine modification in mRNA: machinery, function and implications for health and diseases. FEBS J.283(9), 1607–1630 (2016).
  • De Souza-Cruz S , VictoriaMB , TarragoAMet al. Liver and blood cytokine microenvironment in HCV patients is associated to liver fibrosis score: a proinflammatory cytokine ensemble orchestrated by TNF and tuned by IL-10. BMC Microbiol.16, 3 (2016).
  • Lu H , LeiX , ZhangQ. Moderate activation of IKK2-NF-kB in unstressed adult mouse liver induces cytoprotective genes and lipogenesis without apparent signs of inflammation or fibrosis. BMC Gastroenterol.15, 94 (2015).
  • Kariko K , BucksteinM , NiH , WeissmanD. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity23(2), 165–175 (2005).
  • Cao G , LiHB , YinZ , FlavellRA. Recent advances in dynamic m6A RNA modification. Open Biol.6(4), 160003 (2016).
  • Abdelmegeed MA , ChoiY , GodlewskiGet al. Cytochrome P450-2E1 promotes fast food-mediated hepatic fibrosis. Sci Rep.7, 39764 (2017).
  • Krizhanovsky V , YonM , DickinsRAet al. Senescence of activated stellate cells limits liver fibrosis. Cell134(4), 657–667 (2008).
  • Ding Q , XieXL , WangMMet al. The role of the apoptosis-related protein BCL-B in the regulation of mitophagy in hepatic stellate cells during the regression of liver fibrosis. Exp.& Mol. Med.51(1), 6 (2019).
  • Park EJ , ZhaoYZ , KimYH , LeeBH , SohnDH. Honokiol induces apoptosis via cytochrome c release and caspase activation in activated rat hepatic stellate cells in vitro. Planta Med.71(1), 82–84 (2005).
  • Cha JH , BaeSH , KimHLet al. Branched-chain amino acids ameliorate fibrosis and suppress tumor growth in a rat model of hepatocellular carcinoma with liver cirrhosis. PloS ONE8(11), e77899 (2013).
  • Mair M , BlaasL , OsterreicherCH , CasanovaE , EferlR. JAK-STAT signaling in hepatic fibrosis. Front. Biosci.16, 2794–2811 (2011).
  • Sanchez-Valle V , Chavez-TapiaNC , UribeM , Mendez-SanchezN. Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr. Med. Chem.19(28), 4850–4860 (2012).
  • Friedman SL , RollFJ , BoylesJ , ArensonDM , BissellDM. Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix. J. Biol. Chem.264(18), 10756–10762 (1989).
  • Gao B , RadaevaS. Natural killer and natural killer T cells in liver fibrosis. Biochim. Biophys. Acta1832(7), 1061–1069 (2013).
  • Weisberg SP , HunterD , HuberRet al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest.116(1), 115–124 (2006).
  • Miura K , YangL , Van RooijenN , OhnishiH , SekiE. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol.- Gastroint. Liver Physiol.302(11), G1310–1321 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.