3,610
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transcriptomic and epigenomics atlas of myotubes reveals insight into the circadian control of metabolism and development

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 701-713 | Received 17 Dec 2019, Accepted 05 Feb 2020, Published online: 11 Mar 2020

References

  • Hastings MH , ReddyAB , MaywoodES. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci.4(8), 649–661 (2003).
  • Stratmann M , SchiblerU. Properties, entrainment and physiological functions of mammalian peripheral oscillators. J. Biol. Rhythms21(6), 494–506 (2006).
  • Antunes LC , LevandovskiR , DantasG , CaumoW , HidalgoMP. Obesity and shift work: chronobiological aspects. Nutr. Res. Rev.23(1), 155–168 (2010).
  • Esquirol Y , BongardV , MabileL , JonnierB , SoulatJM , PerretB. Shift work and metabolic syndrome: respective impacts of job strain, physical activity and dietary rhythms. Chronobiol. Int.26(3), 544–559 (2009).
  • Pan A , SchernhammerES , SunQ , HuFB. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med.8(12), e1001141 (2011).
  • Ko CH , TakahashiJS. Molecular components of the mammalian circadian clock. Hum. Mol. Genet.15( Spec. No. 2), R271–R277 (2006).
  • Defronzo RA , SherwinRS , KraemerN. Effect of physical training on insulin action in obesity. Diabetes36(12), 1379–1385 (1987).
  • Dyar KA , CiciliotS , TagliazucchiGMet al. The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle. Mol. Metab.4(11), 823–833 (2015).
  • Hansen J , TimmersS , Moonen-KornipsEet al. Synchronized human skeletal myotubes of lean, obese and type 2 diabetic patients maintain circadian oscillation of clock genes. Sci. Rep.6, 35047 (2016).
  • Hodge BA , WenY , RileyLAet al. The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle. Skelet. Muscle5, 17 (2015).
  • McCarthy JJ , AndrewsJL , McDearmonELet al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol. Genomics31(1), 86–95 (2007).
  • Andrews JL , ZhangX , MccarthyJJet al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc. Natl Acad. Sci. USA107(44), 19090–19095 (2010).
  • Van Moorsel D , HansenJ , HavekesBet al. Demonstration of a day–night rhythm in human skeletal muscle oxidative capacity. Mol. Metab.5(8), 635–645 (2016).
  • Peek CB , LevineDC , CedernaesJet al. Circadian clock interaction with HIF1alpha mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab.25(1), 86–92 (2017).
  • Perrin L , Loizides-MangoldU , SkarupelovaSet al. Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion. Mol. Metab.4(11), 834–845 (2015).
  • Harfmann BD , SchroderEA , KachmanMT , HodgeBA , ZhangX , EsserKA. Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet. Muscle6, 12 (2016).
  • Aguilar-Arnal L , KatadaS , Orozco-SolisR , Sassone-CorsiP. NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1. Nat. Struct. Mol. Biol.22(4), 312–318 (2015).
  • Aguilar-Arnal L , Sassone-CorsiP. The circadian epigenome: how metabolism talks to chromatin remodeling. Curr. Opin. Cell Biol.25(2), 170–176 (2013).
  • Koike N , YooSH , HuangHCet al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science338(6105), 349–354 (2012).
  • Masri S , Sassone-CorsiP. The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat. Rev. Neurosci.14(1), 69–75 (2013).
  • Vollmers C , SchmitzRJ , NathansonJ , YeoG , EckerJR , PandaS. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab.16(6), 833–845 (2012).
  • Azzi A , DallmannR , CasserlyAet al. Circadian behavior is light-reprogrammed by plastic DNA methylation. Nat. Neurosci.17(3), 377–382 (2014).
  • Thaben PF , WestermarkPO. Detecting rhythms in time series with RAIN. J. Biol. Rhythms29(6), 391–400 (2014).
  • Thaben PF , WestermarkPO. Differential rhythmicity: detecting altered rhythmicity in biological data. Bioinformatics32(18), 2800–2808 (2016).
  • Martin M . Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal17(1), 10 (2011).
  • Liao Y , SmythGK , ShiW. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res.41(10), e108 (2013).
  • Liao Y , SmythGK , ShiW. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics30(7), 923–930 (2014).
  • Ritchie ME , PhipsonB , WuDet al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.43(7), e47 (2015).
  • Robinson MD , MccarthyDJ , SmythGK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics26(1), 139–140 (2010).
  • Krueger F and rewsSR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics27(11), 1571–1572 (2011).
  • Eden E , NavonR , SteinfeldI , LipsonD , YakhiniZ. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics10, 48 (2009).
  • Balsalobre A , DamiolaF , SchiblerU. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 93(6), 929–37 (1998).
  • Frankish A , DiekhansM , FerreiraAMet al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res.47(D1), D766–D773 (2019).
  • Miller BH , McdearmonEL , PandaSet al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl Acad. Sci. USA104(9), 3342–3347 (2007).
  • Murtagh F , LegendreP. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion?J. Classif.31(3), 274–295 (2014).
  • Vitaterna MH , KingDP , ChangAMet al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science264(5159), 719–725 (1994).
  • Loizides-Mangold U , PerrinL , VandereyckenBet al. Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proc. Natl Acad. Sci. USA114(41), E8565–E8574 (2017).
  • Abdelmoez AM , SardonPuig L , SmithJAet al. Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. Am. J. Physiol. Cell Physiol. doi:10.1152/ajpcell.00540.2019 (2019) ( Epub ahead of print).
  • Lei Y , ZhangX , SuJet al. Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat. Commun.8, 16026 (2017).
  • Amabile A , MigliaraA , CapassoPet al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell167(1), 219–232 (2016).
  • Xia L , MaS , ZhangYet al. Daily variation in global and local DNA methylation in mouse livers. PLoS ONE10(2), e0118101 (2015).
  • Tomita T , KuritaR , OnishiY. Epigenetic regulation of the circadian clock: role of 5-aza-2′-deoxycytidine. Biosci. Rep.37(3), 1–10 (2017).
  • Zhu Y , StevensRG , HoffmanAEet al. Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol. Int.28(10), 852–861 (2011).
  • Bhatti P , ZhangY , SongXet al. Nightshift work and genome-wide DNA methylation. Chronobiol. Int.32(1), 103–112 (2015).
  • Kangaspeska S , StrideB , MetivierRet al. Transient cyclical methylation of promoter DNA. Nature452(7183), 112–115 (2008).
  • Metivier R , GallaisR , TiffocheCet al. Cyclical DNA methylation of a transcriptionally active promoter. Nature452(7183), 45–50 (2008).
  • Barres R , YanJ , EganBet al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab.15(3), 405–411 (2012).
  • Pattamaprapanont P , GardeC , FabreO , BarresR. Muscle contraction induces acute hydroxymethylation of the exercise-responsive gene Nr4a3. Front. Endocrinol. (Lausanne)7, 165 (2016).
  • Guo JU , SuY , ZhongC , MingGL , SongH. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell145(3), 423–434 (2011).
  • Wu SC , ZhangY. Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol.11(9), 607–620 (2010).
  • Yang X , HanH , DeCarvalho DD , LayFD , JonesPA , LiangG. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell26(4), 577–590 (2014).