275
Views
0
CrossRef citations to date
0
Altmetric
Review

Exosomal MicroRNAs: Novel Players in Cervical Cancer

, , , , , , , & ORCID Icon show all
Pages 1651-1660 | Received 20 Jan 2020, Accepted 23 Jul 2020, Published online: 22 Sep 2020

References

  • Vaccarella S , Lortet-TieulentJ , PlummerM , FranceschiS , BrayF. Worldwide trends in cervical cancer incidence: impact of screening against changes in disease risk factors. Eur. J. Cancer49(15), 3262–3273 (2013).
  • Wang J , WangT , YangYet al. Patient age, tumor appearance and tumor size are risk factors for early recurrence of cervical cancer. Mol. Clin. Oncol.3(2), 363–366 (2015).
  • Mao S , DongJ , LiS , WangY , WuP. Prognostic significance of number of nodes removed in patients with node-negative early cervical cancer. J. Obstet. Gynaecol. Res.42(10), 1317–1325 (2016).
  • Lee Y-J , KimD , LeeSet al. A postoperative scoring system for distant recurrence in node-positive cervical cancer patients after radical hysterectomy and pelvic lymph node dissection with para-aortic lymph node sampling or dissection. Gynecol. Oncol.144(3), 536–540 (2017).
  • Kim Y-J . Prognostic analysis of uterine cervical cancer treated with postoperative radiotherapy: importance of positive or close parametrial resection margin. Radiat. Oncol. J.33(2), 109 (2015).
  • Lehuédé C , DupuyF , RabinovitchR , JonesRG , SiegelPM. Metabolic plasticity as a determinant of tumor growth and metastasis. Cancer Res.76(18), 5201–5208 (2016).
  • Takanami I . Lymphatic microvessel density using D2–40 is associated with nodal metastasis in non-small cell lung cancer. Oncol. Rep.15(2), 437–442 (2006).
  • Bono P , WaseniusV-M , HeikkiläPet al. High LYVE-1-positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clin. Cancer Res.10(21), 7144–7149 (2004).
  • Achen MG , McCollBK , StackerSA. Focus on lymphangiogenesis in tumor metastasis. Cancer Cell7(2), 121–127 (2005).
  • Alitalo K , TammelaT , PetrovaTV. Lymphangiogenesis in development and human disease. Nature438(7070), 946–953 (2005).
  • Sadri Nahand J , Taghizadeh-BoroujeniS , KarimzadehMet al. microRNAs: new prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J. Cell Physiol.234(10), 17064–17099 (2019).
  • Mitchell PS , ParkinRK , KrohEMet al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci.105(30), 10513–10518 (2008).
  • Schwarzenbach H , NishidaN , CalinGA , PantelK. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol.11(3), 145 (2014).
  • Théry C , ZitvogelL , AmigorenaS. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol.2(8), 569–579 (2002).
  • Silva J , GarcíaV , ZaballosÁet al. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur. Resp. J37(3), 617–623 (2011).
  • Taylor DD , Gercel-TaylorC. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol.110(1), 13–21 (2008).
  • Rabinowits G , Gerçel-TaylorC , DayJM , TaylorDD , KloeckerGH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer10(1), 42–46 (2009).
  • Azmi AS , BaoB , SarkarFH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metast. Rev.32(3–4), 623–642 (2013).
  • Melo SA , LueckeLB , KahlertCet al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature523(7559), 177–182 (2015).
  • de Jong OG , VerhaarMC , ChenYet al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracellular Vesicles1(1), 18396 (2012).
  • Al-Nedawi K , MeehanB , RakJ. Microvesicles: messengers and mediators of tumor progression. Cell cycle8(13), 2014–2018 (2009).
  • Muralidharan-Chari V , ClancyJW , SedgwickA , D’Souza-SchoreyC. Microvesicles: mediators of extracellular communication during cancer progression. J. Cell Sci.123(10), 1603–1611 (2010).
  • Lee TH , D’AstiE , MagnusNet al. Microvesicles as mediators of intercellular communication in cancer –the emerging science of cellular ‘debris’. Semin. Immunopathol.33( 5), 455–67 (2011).
  • Bukong TN , Momen-HeraviF , KodysK , BalaS , SzaboG. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathogens10(10), (2014).
  • Ogawa Y , MiuraY , HarazonoAet al. Proteomic analysis of two types of exosomes in human whole saliva. Biological and Pharmaceutical Bulletin34(1), 13–23 (2011).
  • Dowling RJ , TopisirovicI , FonsecaBD , SonenbergN. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim. Biophys, Acta1804(3), 433–439 (2010).
  • Sadri Nahand J , MoghoofeiM , SalmaninejadAet al. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: a review. Intl. J. Cancer146(2), 305–320 (2020).
  • Ghasemi F , ShafieeM , BanikazemiZet al. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol. Res. Pract.215(10), 152556 (2019).
  • Howell LP , ZhouH , WuW , DavisR. Significance of subclassifying high-grade squamous intraepithelial lesions into moderate dysplasia/CIN II versus severe dysplasia/CIN III/CIS in the Bethesda system terminology. Diagnostic Cytopathology30(5), 362–366 (2004).
  • Schiffman M , DoorbarJ , WentzensenNet al. Carcinogenic human papillomavirus infection. Nat. Rev. Disease Primers2(1), 1–20 (2016).
  • Yang X , ChengY , LiC. The role of TLRs in cervical cancer with HPV infection: a review. Signal Transduction and Targeted Therapy2(1), 1–10 (2017).
  • Crosbie EJ , EinsteinMH , FranceschiS , KitchenerHC. Human papillomavirus and cervical cancer. The Lancet382(9895), 889–899 (2013).
  • Clifford G , FranceschiS , DiazM , MuñozN , VillaLL. HPV type-distribution in women with and without cervical neoplastic diseases. Vaccine24, S26–S34 (2006).
  • Al-Nedawi K , MeehanE , MicallefJet al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol.10(5), 619–624 (2008).
  • Mangino G , ChiantoreMV , IulianoMet al. Role of extracellular vesicles in human papillomavirus-induced tumorigenesis. Current Perspectives in Human Papillomavirus.IntechOpen2018.
  • Becker A , ThakurBK , WeissJMet al. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell.30(6), 836–848 (2016).
  • Raposo G , StoorvogelW. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell. Biol.200(4), 373–383 (2013).
  • Christ L , RaiborgC , WenzelEM , CampsteijnC , StenmarkH. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Bochem. Sci.42(1), 42–56 (2017).
  • Kajimoto T , OkadaT , MiyaS , ZhangvL , NakamuraS. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat. Commun.4(1), 1–13 (2013).
  • Trajkovic K , HsuC , ChiantiaSet al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science319(5867), 1244–1247 (2008).
  • Pefanis E , WangJ , RothschildGet al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell161(4), 774–789 (2015).
  • Thakur BK , ZhangH , BeckerAet al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res.24(6), 766–769 (2014).
  • Kahlert C . Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem.289(7), 3869–3875 (2014).
  • Skotland T , SandvigK , LlorenteA. Lipids in exosomes: current knowledge and the way forward. Prog. Lipid. Res.66, 30–41 (2017).
  • Zhang H , FreitasD , KimHS , FabijanicKet al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol.20(3), 332–343 (2018).
  • Willms E , JohanssonHJ , MägerIet al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep.6, 22519 (2016).
  • Latifkar A , CerioneRA , AntonyakMA. Probing the mechanisms of extracellular vesicle biogenesis and function in cancer. Biochem. Soc.46(5), 1137–1146 (2018).
  • Kalra H , DrummenGP , MathivananS. Focus on extracellular vesicles: introducing the next small big thing. Intl. J. Mol. Sci.17(2), 170 (2016).
  • Hessvik NP , LlorenteA. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci.75(2), 193–208 (2018).
  • Bobrie A , ColomboM , KrumeichS , RaposoG , ThéryC. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J. Extracell. Vesicles1(1), 18397 (2012).
  • Muralidharan-Chari V , ClancyJ , PlouCet al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol.19(22), 1875–1885 (2009).
  • Witwer KW , SoekmadjiC , HillAFet al. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. J. Extracell. Vesicles6( 1), 1396823 (2017).
  • Lötvall J , HillAF , HochbergFet al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles3, 26913 (2014).
  • Hunter MP , IsmailN , ZhangXet al. Detection of microRNA expression in human peripheral blood microvesicles. PloS One3(11), e3694 (2008).
  • Valadi H , EkströmK , BossiosA , SjöstrandM , LeeJJ , LötvallJO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol.9(6), 654–659 (2007).
  • Goldie BJ , DunMD , LinMet al. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res.42(14), 9195–9208 (2014).
  • Guduric-Fuchs J , O’ConnorA , CampBet al. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics13(1), 357 (2012).
  • Kosaka N , IguchiH , HagiwaraKet al. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J. Biol. Chem.288(15), 10849–10859 (2013).
  • Villarroya-Beltri C , Gutiérrez-VázquezC , Sánchez-CaboFet al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun.4, 2980 (2013).
  • Koppers-Lalic D , HackenbergM , BijnsdorpIVet al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep.8(6), 1649–1658 (2014).
  • Frank F , SonenbergN , NagarB. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature465(7299), 818–822 (2010).
  • Melo SA , SugimotoH , O’ConnellJTet al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell26(5), 707–721 (2014).
  • Fabbri M , PaoneA , CaloreFet al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl Acad. Sci. USA109(31), E2110–E2116 (2012).
  • Zhou W , FongMY , MinYet al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell25(4), 501–515 (2014).
  • Skalsky RL , CullenBR. Viruses, microRNAs, and host interactions. Annu. Rev. Microbiol.64, 123–141 (2010).
  • Chiantore MV , ManginoG , IulianoMet al. Human papillomavirus E6 and E7 oncoproteins affect the expression of cancer-related microRNAs: Additional evidence in HPV-induced tumorigenesis. J. Cancer Res. Clin. Oncol.142(8), 1751–1763 (2016).
  • Wei W-F , ZhouC-F , WuX-Get al. MicroRNA-221-3p, a TWIST2 target, promotes cervical cancer metastasis by directly targeting THBS2. Cell Death Dis.8(12), 1–13 (2017).
  • Wei W-F , ZhouC-F , WuX-Get al. Cancer-derived exosomal miR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis22(3), 397–410 (2019).
  • Zhou C-F , MaJ , HuangLet al. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene38(8), 1256–1268 (2019).
  • Nishi H , NishiH , SasakiTet al. Exosomal-miRNA profiles as diagnostic biomarkers in cervical cancer. Am. Soc.Clin.Oncol. (2012).
  • Liu J , SunH , WangXet al. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Intl. J. Mol. Sci.15(1), 758–773 (2014).
  • Honegger A , SchillingD , BastianSet al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathogens11(3), (2015).
  • Harden ME , MungerK. Human papillomavirus 16 E6 and E7 oncoprotein expression alters microRNA expression in extracellular vesicles. Virology508, 63–69 (2017).
  • Van Ostade X , DomM , TjalmaW , RaemdonckGVet al. Candidate biomarkers in the cervical vaginal fluid for the (self-) diagnosis of cervical precancer. Arch. Gynecol. Obstet.297(2), 295–311 (2018).
  • Dong L , LinW , QiPet al. Circulating long RNAs in serum extracellular vesicles: their characterization and potential application as biomarkers for diagnosis of colorectal cancer. Cancer Epidemiol. Biomarkers Prev.25(7), 1158–1166 (2016).
  • Dong L , QiP , XuM-Det al. Circulating CUDR, LSINCT-5 and PTENP 1 long noncoding RNAs in sera distinguish patients with gastric cancer from healthy controls. Intl. J. Cancer137(5), 1128–1135 (2015).
  • Rönnau C , VerhaeghGW , Luna-VelezMV , SchalkenJA. Noncoding RNAs as novel biomarkers in prostate cancer. BioMed Res. Int.2014, 591703 (2014).
  • Zhou X , YinC , DangY , YeF , ZhangG. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci. Rep.5, 11516 (2015).
  • Ren S , WangF , ShenJet al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur. J. Cancer49(13), 2949–2959 (2013).
  • Honegger A , LeitzJ , BulkescherJ , Hoppe-SeylerK , Hoppe-SeylerF. Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. Intl. J. Cancer133(7), 1631–1642 (2013).
  • Zheng M , HouL , MaYet al. Exosomal let-7d-3p and miR-30d-5p as diagnostic biomarkers for non-invasive screening of cervical cancer and its precursors. Mol. Cancer18(1), 76 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.