3,746
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Single-Cell Epigenomics in Cancer: Charting a Course to Clinical Impact

, , & ORCID Icon
Pages 1139-1151 | Received 03 Feb 2020, Accepted 27 Apr 2020, Published online: 13 Aug 2020

References

  • Meissner A . Epigenetic modifications in pluripotent and differentiated cells. Nature Biotechnol.28(10), 1079–1088 (2010).
  • Baylin SB , JonesPA. A decade of exploring the cancer epigenome - biological and translational implications. Nat. Rev. Cancer11(10), 726–734 (2011).
  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet.13(7), 484–492 (2012).
  • Zhao Z , ShilatifardA. Epigenetic modifications of histones in cancer. Genome Biol.20(1), 245 (2019).
  • Biswas S , RaoCM. Epigenetic tools (the writers, the readers and the erasers) and their implications in cancer therapy. Eur. J. Pharmacol.837, 8–24 (2018).
  • Schubeler D . Function and information content of DNA methylation. Nature517(7534), 321–326 (2015).
  • Okano M , XieS , LiE. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet.19(3), 219–220 (1998).
  • Wu H , ZhangY. Reversing DNA methylation: mechanisms, genomics and biological functions. Cell156(1-2), 45–68 (2014).
  • Feng Q , ZhangY. The MeCP1 complex represses transcription through preferential binding, remodeling and deacetylating methylated nucleosomes. Genes Dev.15(7), 827–832 (2001).
  • Leighton G , WilliamsDC. The methyl-CpG–binding domain 2 and 3 proteins and formation of the nucleosome remodeling and deacetylase complex. J. Mol. Biol.432(6), 1624–1639 (2019).
  • Itzen F , GreifenbergAK , BöskenCA , GeyerM. Brd4 activates P-TEFb for RNA polymerase II CTD phosphorylation. Nucleic Acids Res.42(12), 7577–7590 (2014).
  • Jones PA , IssaJP , BaylinS. Targeting the cancer epigenome for therapy. Nat. Rev. Genet.17(10), 630–641 (2016).
  • Du Q , BertSA , ArmstrongNJet al. Replication timing and epigenome remodelling are associated with the nature of chromosomal rearrangements in cancer. Nat. Commun.10(1), 416 (2019).
  • Thienpont B , SteinbacherJ , ZhaoHet al. tumor hypoxia causes DNA hypermethylation by reducing TET activity. Nature537(7618), 63–68 (2016).
  • Ng JM , YuJ. Promoter hypermethylation of tumor suppressor genes as potential biomarkers in colorectal cancer. Int. J. Mol. Sci.16(2), 2472–2496 (2015).
  • Bhatia V , GoelMM , MakkerAet al. Promoter region hypermethylation and mRNA expression of MGMT and p16 genes in tissue and blood samples of human premalignant oral lesions and oral squamous cell carcinoma. Biomed. Res. Int.2014, 248419–248419 (2014).
  • Liyanage C , WathupolaA , MuraleetharanS , PereraK , PunyadeeraC , UdagamaP. Promoter hypermethylation of tumor-suppressor genes p16(INK4a), RASSF1A, TIMP3 and PCQAP/MED15 in salivary DNA as a quadruple biomarker panel for early detection of oral and oropharyngeal cancers. Biomolecules9(4), 148 (2019).
  • Lv X , YeG , ZhangX , HuangT. p16 Methylation was associated with the development, age, hepatic viruses infection of hepatocellular carcinoma and p16 expression had a poor survival: a systematic meta-analysis (PRISMA). Medicine96(38), e8106 (2017).
  • Liu Y , LanQ , SiegfriedJM , LuketichJD , KeohavongP. Aberrant promoter methylation of p16 and MGMT genes in lung tumors from smoking and never-smoking lung cancer patients. Neoplasia8(1), 46–51 (2006).
  • Bilgrami SM , QureshiSA , PervezS , AbbasF. Promoter hypermethylation of tumor suppressor genes correlates with tumor grade and invasiveness in patients with urothelial bladder cancer. Springerplus3, 178 (2014).
  • Fiolka R , ZuborP , JanusicovaVet al. Promoter hypermethylation of the tumor-suppressor genes RASSF1A, GSTP1 and CDH1 in endometrial cancer. Oncol. Rep.30(6), 2878–2886 (2013).
  • Kang JH , KimSJ , NohDYet al. Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma. Lab. Invest.81(4), 573–579 (2001).
  • Zhang L , LongX. Association of BRCA1 promoter methylation with sporadic breast cancers: evidence from 40 studies. Sci. Rep.5, 17869–17869 (2015).
  • Kondo Y , ShenL , IssaJP. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol. Cell. Biol.23(1), 206–215 (2003).
  • Di Cerbo V , SchneiderR. Cancers with wrong HATs: the impact of acetylation. Brief Funct. Genomics12(3), 231–243 (2013).
  • Glozak MA , SetoE. Histone deacetylases and cancer. Oncogene26(37), 5420–5432 (2007).
  • Kandoth C , MclellanMD , VandinFet al. Mutational landscape and significance across 12 major cancer types. Nature502(7471), 333–339 (2013).
  • Shlush LI , ZandiS , MitchellAet al. Identification of pre-leukaemic haematopoietic stem cells in acute leukemia. Nature506(7488), 328–333 (2014).
  • Jan M , SnyderTM , Corces-ZimmermanMRet al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl. Med.4, 149ra118 (2012).
  • Abelson S , CollordG , NgSWKet al. Prediction of acute myeloid leukemia risk in healthy individuals. Nature559(7714), 400–404 (2018).
  • Desai P , Mencia-TrinchantN , SavenkovOet al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat. Med.24(7), 1015–1023 (2018).
  • The Cancer Genome Atlas Research Network . Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med.368(22), 2059–2074 (2013).
  • Spencer DH , Russler-GermainDA , KetkarSet al. CpG island hypermethylation mediated by DNMT3A is a consequence of AML progression. Cell168(5), 801–816e813 (2017).
  • Rasmussen KD , JiaG , JohansenJVet al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev.29(9), 910–922 (2015).
  • Brocks D , AssenovY , MinnerSet al. Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer. Cell Rep.8(3), 798–806 (2014).
  • Li S , Garrett-BakelmanFE , ChungSSet al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat. Med.22(7), 792–799 (2016).
  • Pan H , JiangY , BoiMet al. Epigenomic evolution in diffuse large B-cell lymphomas. Nat. Commun.6, 6921 (2015).
  • Gaiti F , ChaligneR , GuHet al. Epigenetic evolution and lineage histories of chronic lymphocytic leukemia. Nature569(7757), 576–580 (2019).
  • Bian S , HouY , ZhouXet al. Single-cell multiomics sequencing and analyses of human colorectal cancer. Science362(6418), 1060–1063 (2018).
  • Song L , LiY. Progress on the clinical application of the SEPT9 gene methylation assay in the past 5 years. Biomark. Med.11(6), 415–418 (2017).
  • Chan KCA , JiangP , ChanCWMet al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc. Natl Acad. Sci. USA110(47), 18761–18768 (2013).
  • Shen SY , SinghaniaR , FehringerGet al. Sensitive tumor detection and classification using plasma cell-free DNA methylomes. Nature563(7732), 579–583 (2018).
  • Pixberg CF , RabaK , MullerFet al. Analysis of DNA methylation in single circulating tumor cells. Oncogene363223–3231 (2017).
  • Pixberg CF , SchulzWA , StoeckleinNH , NevesRPL. Characterization of DNA methylation in circulating tumor cells. Genes6(4), 1053–1075 (2015).
  • Stirzaker C , ZotenkoE , SongJZet al. Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nat. Commun.6, 5899 (2015).
  • Moran S , Martínez-CardúsA , SayolsSet al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol.17(10), 1386–1395 (2016).
  • Wick W , WellerM , VanDen Bent Met al. MGMT testing – the challenges for biomarker-based glioma treatment. Nat. Rev. Neurol.10, 372 (2014).
  • Cheng Y , HeC , WangMet al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct. Target. Ther.4(1), 62 (2019).
  • Fenaux P , MuftiGJ , Hellstrom-LindbergEet al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J. Clin. Oncol.28(4), 562–569 (2010).
  • Fennell KA , BellCC , DawsonMA. Epigenetic therapies in acute myeloid leukemia: where to from here?Blood134(22), 1891–1901 (2019).
  • Alqahtani A , ChoucairK , AshrafMet al. Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci. OA5(3), Fso372 (2019).
  • Mohammad HP , BarbashO , CreasyCL. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat. Med.25(3), 403–418 (2019).
  • Jones PA , OhtaniH , ChakravarthyA , DeCarvalho DD. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer19(3), 151–161 (2019).
  • Clark SJ , LeeHJ , SmallwoodSA , KelseyG , ReikW. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol.17, 72 (2016).
  • Kelsey G , StegleO , ReikW. Single-cell epigenomics: recording the past and predicting the future. Science358(6359), 69–75 (2017).
  • Schwartzman O , TanayA. Single-cell epigenomics: techniques and emerging applications. Nat. Rev. Genet.16, 716 (2015).
  • Knapp DJHF , HammondCA , HuiTet al. Single-cell analysis identifies a CD33+ subset of human cord blood cells with high regenerative potential. Nat. Cell Biol.20(6), 710–720 (2018).
  • Angermueller C , ClarkSJ , LeeHJet al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods13(3), 229–232 (2016).
  • Argelaguet R , ClarkSJ , MohammedHet al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature576(7787), 487–491 (2019).
  • Lareau CA , DuarteFM , ChewJGet al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nature Biotechnol.37(8), 916–924 (2019).
  • Zhu C , PreisslS , RenB. Single-cell multimodal omics: the power of many. Nature methods17(1), 11–14 (2020).
  • Satpathy AT , GranjaJM , YostKEet al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nature Biotechnol.37(8), 925–936 (2019).
  • Hemberger M , DeanW , ReikW. Epigenetic dynamics of stem cells and cell lineage commitment. Digging Waddington’s canal. Nat. Rev. Mol. Cell Biol.10, 526–537 (2009).
  • Lee HJ , HoreTA , ReikW. Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell14(6), 710–719 (2014).
  • Giraldo NA , Sanchez-SalasR , PeskeJDet al. The clinical role of the TME in solid cancer. Br. J. Cancer120(1), 45–53 (2019).
  • Gustavson MD , Bourke-MartinB , ReillyDet al. Standardization of HER2 immunohistochemistry in breast cancer by automated quantitative analysis. Arch. Pathol. Lab. Med.133(9), 1413–1419 (2009).
  • Suvà ML , TiroshI. Single-cell RNA sequencing in cancer: lessons learned and emerging challenges. Mol. Cell75(1), 7–12 (2019).
  • Gao R , DavisA , McdonaldTOet al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet.48(10), 1119–1130 (2016).
  • Tirosh I , VenteicherAS , HebertCet al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature539(7628), 309–313 (2016).
  • Van Galen P , HovestadtV , WadsworthIi MHet al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell176(6), 1265–1281.e1224 (2019).
  • Buenrostro JD , WuB , LitzenburgerUMet al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature523(7561), 486–490 (2015).
  • Farlik M , SheffieldNC , NuzzoA , DatlingerP , SchöneggerA , KlughammerJ. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep.10(8), 1386–1397 (2015).
  • Litzenburger UM , BuenrostroJD , WuBet al. Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Biol.18(1), 15 (2017).
  • Corces MR , BuenrostroJD , WuBet al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet.48(10), 1193–1203 (2016).
  • American Cancer Society . Cancer facts & figures 2020. (2020). www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf
  • Lambert AW , PattabiramanDR , WeinbergRA. Emerging biological principles of metastasis. Cell168(4), 670–691 (2017).
  • Fares J , FaresMY , KhachfeHH , SalhabHA , FaresY. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target. Ther.5(1), 28 (2020).
  • Chatterjee A , RodgerEJ , EcclesMR. Epigenetic drivers of tumorigenesis and cancer metastasis. Semin. Cancer Biol.51, 149–159 (2018).
  • Tam WL , WeinbergRA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med.19, 1438 (2013).
  • Chaffer Christine l , MarjanovicNemanja d , LeeTet al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell154(1), 61–74 (2013).
  • Ramskold D , LuoS , WangY-Cet al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotech.30(8), 777–782 (2012).
  • Pastushenko I , BrisebarreA , SifrimAet al. Identification of the tumor transition states occurring during EMT. Nature556(7702), 463–468 (2018).
  • Ting David t , WittnerBen s , LigorioMet al. Single-Cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep.8(6), 1905–1918 (2014).
  • Miyamoto DT , ZhengY , WittnerBSet al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science349(6254), 1351–1356 (2015).
  • Lawson DA , BhaktaNR , KessenbrockK , PrummelKD , YuY , TakaiK. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature526 (2015).
  • Gkountela S , Castro-GinerF , SzczerbaBMet al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell176(1), 98–112.e114 (2019).
  • Iorgulescu JB , HararyM , ZoggCKet al. Improved risk-adjusted survival for melanoma brain metastases in the era of checkpoint blockade immunotherapies: results from a national cohort. Cancer Immunol. Res.6(9), 1039–1045 (2018).
  • Sambi M , BagheriL , SzewczukMR. Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J. Oncol.2019, 4508794 (2019).
  • Jerby-Arnon L , ShahP , CuocoMSet al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell175(4), 984–997.e924 (2018).
  • Duchmann M , ItzyksonR. Clinical update on hypomethylating agents. Int. J. Hematol.110(2), 161–169 (2019).
  • Kim D , KobayashiT , VoisinBet al. Targeted therapy guided by single-cell transcriptomic analysis in drug-induced hypersensitivity syndrome: a case report. Nat. Med.26(2), 236–243 (2020).
  • Flores-Montero J , Sanoja-FloresL , PaivaBet al. Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia31(10), 2094–2103 (2017).
  • Theunissen P , MejstrikovaE , SedekLet al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood129(3), 347–357 (2017).
  • Ossenkoppele G , SchuurhuisGJ. MRD in AML: does it already guide therapy decision-making?Hematology2016(1), 356–365 (2016).
  • Izevbaye I , LiangLY , MatherC , El-HallaniS , MaglantayRJr , SainiL. Clinical validation of a myeloid next-generations sequencing panel for single-nucleotide variants, insertions/deletions and fusion genes. J. Mol. Diagn.22(2), 208–219 (2020).
  • Sabour L , SabourM , GhorbianS. Clinical applications of next-generation sequencing in cancer diagnosis. Pathol. Oncol. Res.23(2), 225–234 (2017).
  • Kim T , MoonJH , AhnJ-Set al. Next-generation sequencing–based posttransplant monitoring of acute myeloid leukemia identifies patients at high risk of relapse. Blood132(15), 1604–1613 (2018).
  • Jongen-Lavrencic M , GrobT , HanekampDet al. Molecular minimal residual disease in acute myeloid leukemia. N. Engl. J. Med.378(13), 1189–1199 (2018).
  • Enjeti AK , ChapmanK , TaylorPJ , MeldrumC. Congenital late onset thrombotic thrombocytopenic purpura: a diagnostic challenge. Pathology47(6), 585–586 (2015).
  • Salomon R , KaczorowskiD , Valdes-MoraFet al. Droplet-based single cell RNAseq tools: a practical guide. Lab Chip19(10), 1706–1727 (2019).