206
Views
0
CrossRef citations to date
0
Altmetric
Research Article

LncRNA Gm12840 Mediates WISP1 to Regulate Ischemia-Reperfusion-Induced Renal Fibrosis by Sponging miR-677-5p

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 2205-2218 | Received 21 Feb 2020, Accepted 04 Oct 2020, Published online: 22 Dec 2020

References

  • Coca SG , SinganamalaS , ParikhCR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int.81(5), 442–448 (2012).
  • Chawla LS , EggersmPW , StarmRA , KimmelPL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med.371(1), 58–66 (2014).
  • Sharfuddin AA , MolitorisBA. Pathophysiology of ischemic acute kidney injury. Nat. Rev. Nephrol.7(4), 189–200 (2011).
  • Jin XG , ChenJY , HuZYet al. Genetic deficiency of adiponectin protects against acute kidney injury. Kidney Int.83(4), 604–614 (2013).
  • Munshi R , HsuC , HimmelfarbJ. Advances in understanding ischemic acute kidney injury. BMC Med.9, 11 (2011).
  • Bonventre JV , YangL. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest.121(11), 4210–4221 (2011).
  • Yang B , JainS , PawluczykIZet al. Inflammation and caspase activation in long-term renal ischemia/reperfusion injury and immunosuppression in rats. Kidney Int.68(5), 2050–2067 (2005).
  • Hüttenhofer A , SchattnerP , PolacekN. Non-coding RNAs: hope or hype?Trends Genet.21(5), 289–297 (2005).
  • Natoli G , AndrauJC. Noncoding transcription at enhancers: general principles and functional models. Annu. Rev. Genet.46, 1–19 (2012).
  • Ha M , KimVN. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell. Biol.15(8), 509–524 (2014).
  • Fatica A , BozzoniI. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet.15(1), 7–21 (2014).
  • Grote P , HerrmannBG. Long noncoding RNAs in organogenesis: making the difference. Trends Genet.31(6), 329–335 (2015).
  • Ernst C , MortonCC. Identification and function of long non-coding RNA. Front. Cell. Neurosci.7, 168 (2013).
  • Iyengar BR , ChoudharyA , SarangdharMAet al. Non-coding RNA interact to regulate neuronal development and function. Front. Cell. Neurosci.8, 47 (2014).
  • Wang KC , ChangHY. Molecular mechanisms of long noncoding RNAs. Mol. Cell.43(6), 904–914 (2011).
  • Dreval K , de ContiA , FuruyaSet al. miR-1247 blocks SOX9-mediated regeneration in alcohol- and fibrosis-associated acute kidney injury in mice. Toxicology384, 40–49 (2017).
  • Ge QM , HuangCM , ZhuXYet al. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PLoS ONE12(3), e0173292 (2017).
  • Wen L , AndersenPK , HusumDMUet al. MicroRNA-148b regulates megalin expression and is associated with receptor downregulation in mice with unilateral ureteral obstruction. Am. J. Physiol. Renal. Physiol.313(2), F210–217 (2017).
  • Chen SJ , WuP , SunLJet al. MiR-204 regulates epithelial-mesenchymal transition by targeting SP1 in the tubular epithelial cells after acute kidney injury induced by ischemia-reperfusion. Oncol. Rep.37(2), 1148–1158 (2017).
  • Güçlü A , KoçakC , KoçakFEet al. Micro RNA-320 as a novel potential biomarker in renal ischemia reperfusion. Ren. Fail.38(9), 1468–1475 (2016).
  • Zhou J , ChenHT , FanYL. Systematic analysis of the expression profile of non-coding RNAs involved in ischemia/reperfusion-induced acute kidney injury in mice using RNA sequencing. Oncotarget.8(59), 100196–100215 (2017).
  • Dos Santos NA , CarvalhoRodrigues MA , MartinsNM , dos SantosAC. Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch. Toxicol.86(8), 1233–1250 (2012).
  • Xia Y , YanJ , JinXet al. The chemokine receptor CXCR6 contributes to recruitment of bone marrowderived fibroblast precursors in renal fibrosis. Kidney Int.86(2), 327–337 (2014).
  • Bidani AK , GriffinKA. Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension44(5), 595–601 (2004).
  • Strutz F , MullerGA. Renal fibrosis and the origin of the renal fibroblast. Nephrol. Dial. Transplant.21(12), 3368–3370 (2006).
  • Yan J , ZhangZ , YangJet al. JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis. J. Am. Soc. Nephrol.26(12), 3060–3071 (2015).
  • Kanehisa M , ArakiM , GotoSet al. KEGG for linking genomes to life and the environment. Nucleic Acids Res.36(Database issue), D480–D484 (2008).
  • Guttman M , AmitI , GarberMet al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature458(7235), 223–227 (2009).
  • Miller RP , TadagavadiRK , RameshG , ReevesWB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel)2(11), 2490–2518 (2010).
  • Guo J , GuanQ , LiuXet al. Relationship of clusterin with renal inflammation and fibrosis after the recovery phase of ischemia-reperfusion injury. BMC Nephrol.17(1), 133 (2016).
  • Eddy AA . Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int. Suppl.4(1), 2–8 (2011).
  • Tampe D , ZeisbergM. Potential approaches to reverse or repair renal fibrosis. Nat. Rev. Nephrol.10(4), 226–237 (2014).
  • Taft RJ , PangKC , MercerTRet al. Non-coding RNAs: regulators of disease. J. Pathol.220(2), 126–139 (2010).
  • Galasso M , SanaME , VoliniaS. Non-coding RNAs: a key to future personalized molecular therapy?Genome. Med.2(2), 12 (2010).
  • Venkatesh T , SureshPS , TsutsumiR. Non-coding RNAs: functions and applications in endocrine-related cancer. Mol. Cell. Endocrinol.416, 88–96 (2015).
  • Srivastava SP , KoyaD , KanasakiK. MicroRNAs in kidney fibrosis and diabetic nephropathy: roles on EMT and EndMT. Biomed. Res. Int.2013, 125469 (2013).
  • Zhou Q , ChungAC , HuangXRet al. Identification of novel long noncoding RNAs associated with TGF-β/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am. J. Pathol.184(2), 409–417 (2014).
  • Xie H , XueJD , ChaoFet al. Long non-coding RNA-H19 antagonism protects against renal fibrosis. Oncotarget.7(32), 51473–51481 (2016).
  • Salmena L , PolisenoL , TayYet al. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146(3), 353–358 (2011).
  • Thomas M , LiebermanJ , LalA. Desperately seeking microRNA targets. Nat. Struct. Mol. Biol.17(10), 1169–1174 (2010).
  • Yu F , ZhengJ , MaoY , DongPet al. Long non-coding rna growth arrest-specific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA. J. Biol. Chem.290(47), 28286–28298 (2015).
  • Huang C , YangY , LiuL. Interaction of long noncoding RNAs and microRNAs in the pathogenesis of idiopathic pulmonary fibrosis. Physiol. Genomics.47(10), 463–469 (2015).
  • Isaka Y . Targeting TGF-β signaling in kidney fibrosis. Int J Mol Sci.19(9), 2532 (2018).
  • Cao J , MaY , YaoW , ZhangX , WuD. Retinoids regulate adipogenesis involving the TGFβ/SMAD and Wnt/β-catenin pathways in human bone marrow mesenchymal stem cells. Int. J. Mol. Sci.18(4), 842 (2017).
  • Zhou T , HeX , ChengRet al. Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy. Diabetologia55, 255–266 (2012).
  • Tian X , ZhangJ , TanTKet al. Association of β-catenin with P-Smad3 but not LEF-1 dissociates in vitro profibrotic from anti-inflammatory effects of TGF-β1. J. Cell Sci.126(Pt1), 67–76 (2013).
  • Guo Y , GupteM , UmbarkarPet al. Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardialfibrosis. J. Mol. Cell. Cardiol.110, 109–120 (2017).
  • Desnoyers L , ArnottD , PennicaD. WISP-1 binds to decorin and biglycan. J. Biol. Chem.276(50), 47599–47607 (2001).
  • Xu L , CorcoranRB , WelshJWet al. WISP-1 is a Wnt-1- and beta-catenin-responsive oncogene. Genes Dev.14(5), 585–595 (2000).
  • Colston JT , dela Rosa SD , KoehlerMet al. Wnt-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. Am. J. Physiol. Heart. Circ. Physiol.293(3), H1839–1846 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.