144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Role for microRNAs in the Epigenetic Control of Sexually Dimorphic Gene Expression in the Human Placenta

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1543-1558 | Received 14 Feb 2020, Accepted 03 May 2020, Published online: 09 Sep 2020

References

  • Ostlund BD , ConradtE , CrowellSE , TyrkaAR , MarsitCJ , LesterBM. Prenatal stress, fearfulness, and the epigenome: exploratory analysis of sex differences in DNA methylation of the glucocorticoid receptor gene. Front. Behav. Neurosci.10, 147 (2016).
  • Hodyl NA , StarkMJ , Osei-KumahA , CliftonVL. Prenatal programming of the innate immune response following in utero exposure to inflammation: a sexually dimorphic process?Expert Rev. Clin. Immunol.7(5), 579–592 (2011).
  • Broberg K , AhmedS , EngstromKet al. Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J. Dev. Orig. Health Dis.5(4), 288–298 (2014).
  • Drake AJ , O’shaughnessyPJ , BhattacharyaSet al. In utero exposure to cigarette chemicals induces sex-specific disruption of one-carbon metabolism and DNA methylation in the human fetal liver. BMC Med.13, 18 (2015).
  • Rosenfeld CS , TrainorBC. Environmental health factors and sexually dimorphic differences in behavioral disruptions. Curr. Environ. Health Rep.1(4), 287–301 (2014).
  • Di Renzo GC , RosatiA , SartiRD , CrucianiL , CutuliAM. Does fetal sex affect pregnancy outcome?Gend. Med.4(1), 19–30 (2007).
  • Ingemarsson I . Gender aspects of preterm birth. BJOG110(Suppl. 20), S34–S38 (2003).
  • Elsmen E , KallenK , MarsalK , Hellstrom-WestasL. Fetal gender and gestational-age-related incidence of pre-eclampsia. Acta Obstet. Gynecol. Scand.85(11), 1285–1291 (2006).
  • Baron-Cohen S , LombardoMV , AuyeungB , AshwinE , ChakrabartiB , KnickmeyerR. Why are autism spectrum conditions more prevalent in males?PLoS Biol.9(6), e1001081 (2011).
  • Frondas-Chauty A , SimonL , BrangerBet al. Early growth and neurodevelopmental outcome in very preterm infants: impact of gender. Arch. Dis. Child Fetal Neonatal. Ed.99(5), F366–F372 (2014).
  • Johnston MV , HagbergH. Sex and the pathogenesis of cerebral palsy. Dev. Med. Child Neurol.49(1), 74–78 (2007).
  • Stevenson DK , VerterJ , FanaroffAAet al. Sex differences in outcomes of very low birthweight infants: the newborn male disadvantage. Arch. Dis. Child Fetal Neonatal Ed.83(3), F182–F185 (2000).
  • Eriksson JG , KajantieE , OsmondC , ThornburgK , BarkerDJ. Boys live dangerously in the womb. Am. J. Hum. Biol.22(3), 330–335 (2010).
  • Clifton VL . Review: Sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta31(Suppl.), S33–S39 (2010).
  • Gabory A , RoseboomTJ , MooreT , MooreLG , JunienC. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol. Sex Differ.4(1), 5 (2013).
  • Rosenfeld CS . Sex-Specific placental responses in fetal development. Endocrinology156(10), 3422–3434 (2015).
  • Burton GJ , FowdenAL , ThornburgKL. Placental origins of chronic disease. Physiol. Rev.96(4), 1509–1565 (2016).
  • Godfrey KM . The role of the placenta in fetal programming – a review. Placenta23(Suppl. A), S20–S27 (2002).
  • Sood R , ZehnderJL , DruzinML , BrownPO. Gene expression patterns in human placenta. Proc. Natl Acad. Sci. USA103(14), 5478–5483 (2006).
  • Saif Z , HodylN , StarkMet al. Expression of eight glucocorticoid receptor isoforms in the human preterm placenta vary with fetal sex and birthweight. Placenta36(7), 723–730 (2015).
  • Wang Y , PringleKG , SykesSDet al. Fetal sex affects expression of renin-angiotensin system components in term human decidua. Endocrinology153(1), 462–468 (2011).
  • Brown Z , Schalekamp-TimmermansS , TiemeierH , HofmanA , JaddoeW , SteegersE. Fetal sex specific differences in human placentation: a prospective cohort study. Placenta35(6), 359–364 (2014).
  • Saben J , ZhongY , MckelveySet al. A comprehensive analysis of the human placenta transcriptome. Placenta35(2), 125–131 (2014).
  • Buckberry S , Bianco-MiottoT , BentSJ , DekkerGA , RobertsCT. Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal-maternal interface. Mol. Hum. Reprod.20(8), 810–819 (2014).
  • Martin E , SmeesterL , BommaritoPAet al. Sexual epigenetic dimorphism in the human placenta: implications for susceptibility during the prenatal period. Epigenomics9(3), 267–278 (2017).
  • O’brien J , HayderH , ZayedY , PengC. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne)9, 402 (2018).
  • Vasudevan S . Posttranscriptional upregulation by microRNAs. Wiley Interdiscip. Rev. RNA3(3), 311–330 (2012).
  • Xiao M , LiJ , LiWet al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol.14(10), 1326–1334 (2017).
  • Maccani MA , PadburyJF , MarsitCJ. miR-16 and miR-21 expression in the placenta is associated with fetal growth. PloS One6(6), e212102011).
  • Mayor-Lynn K , ToloubeydokhtiT , CruzAC , CheginiN. Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod. Sci.18(1), 46–56 (2011).
  • Hosseini MK , GunelT , GumusogluE , BenianA , AydinliK. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol. Med. Rep.17(4), 4941–4952 (2018).
  • Maccani MA , Avissar-WhitingM , BanisterCE , McgonnigalB , PadburyJF , MarsitCJ. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics5(7), 583–589 (2010).
  • Cai M , KolluruGK , AhmedA. Small molecule, big prospects: MicroRNA in pregnancy and its complications. J. Pregnancy2017, 6972732 (2017).
  • Choi SY , YunJ , LeeOJet al. MicroRNA expression profiles in placenta with severe preeclampsia using a PNA-based microarray. Placenta34(9), 799–804 (2013).
  • Hu Y , LiP , HaoS , LiuL , ZhaoJ , HouY. Differential expression of microRNAs in the placentae of Chinese patients with severe pre-eclampsia. Clin. Chem. Lab. Med.47(8), 923–929 (2009).
  • O’shea TM , AllredEN , DammannOet al. The ELGAN study of the brain and related disorders in extremely low gestational age newborns. Early Hum. Dev.85(11), 719–725 (2009).
  • Addo KA , BulkaC , DhingraRet al. Acetaminophen use during pregnancy and DNA methylation in the placenta of the extremely low gestational age newborn (ELGAN) cohort. Environ. Epigenet.5(2), 2019).
  • Onderdonk AB , DelaneyML , DuboisAM , AllredEN , LevitonA. Detection of bacteria in placental tissues obtained from extremely low gestational age neonates. Am. J. Obstet. Gynecol.198(1), 110.e1-7 (2008).
  • 3′ mRNA-Seq Library Prep Ktt User Guide. www.lexogen.com/wp-content/uploads/2015/11/015UG009V0211_QuantSeq-Illumina.pdf ( 2020).
  • Patro R , DuggalG , LoveMI , IrizarryRA , KingsfordC. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods14(4), 417–419 (2017).
  • Harrow J , FrankishA , GonzalezJMet al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res.22(9), 1760–1774 (2012).
  • Kozomara A , Griffiths-JonesS. miRBase: integrating microRNA annotation and deep-sequencing data. NAR39, D152–D157 (2011).
  • Malnou EC , UmlaufD , MouyssetM , CavailleJ. Imprinted MicroRNA gene clusters in the evolution, development, and functions of mammalian placenta. Front. Genet.9, 706 (2018).
  • Rager JE , AuerbachSS , ChappellGA , MartinE , ThompsonCM , FryRC. Benchmark dose modeling estimates of the concentrations of inorganic arsenic that induce changes to the neonatal transcriptome, proteome, and epigenome in a pregnancy cohort. Chem. Res. Toxicol.30(10), 1911–1920 (2017).
  • Rager JE , BaileyKA , SmeesterLet al. Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ. Mol. Mutagen.55(3), 196–2008 (2014).
  • Rager JE , MoellerBC , MillerSKet al. Formaldehyde-associated changes in microRNAs: tissue and temporal specificity in the rat nose, white blood cells, and bone marrow. Toxicol. Sci.138(1), 36–46 (2014).
  • Klaren WD , RingC , HarrisMAet al. Identifying attributes that influence in vitro-to-in vivo concordance by comparing in vitro Tox21 bioactivity versus in vivo drugmatrix transcriptomic responses across 130 chemicals. Toxicol Sci.167(1), 157–171 (2019).
  • Rager JE , RingCL , FryRCet al. High-throughput screening data interpretation in the context of in vivo transcriptomic responses to oral Cr(VI) exposure. Toxicol. Sci.158(1), 199–212 (2017).
  • Anders S , HuberW. Differential expression analysis for sequence count data. Genome Biol.11(10), R106 (2010).
  • Love MI , HuberW , AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15(12), 550 (2014).
  • Benjamini Y , HochbergY. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B57, 289–300 (1995).
  • Morales-Prieto DM , ChaiwangyenW , Ospina-PrietoSet al. MicroRNA expression profiles of trophoblastic cells. Placenta33(9), 725–734 (2012).
  • Gu Y , SunJ , GroomeLJ , WangY. Differential miRNA expression profiles between the first and third trimester human placentas. Am. J. Physiol. Endocrinol. Metab.304(8), E836–E843 (2013).
  • Winn VD , Haimov-KochmanR , PaquetACet al. Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term. Endocrinology148(3), 1059–1079 (2007).
  • Mikheev AM , NabekuraT , KaddoumiAet al. Profiling gene expression in human placentae of different gestational ages: an OPRU* network and UW SCOR† study. Reprod. Sci.15(9), 866–877 (2008).
  • Rager JE , MoellerBC , Doyle-EiseleM , KrackoD , SwenbergJA , FryRC. Formaldehyde and epigenetic alterations: microRNA changes in the nasal epithelium of nonhuman primates. Environ. Health Perspect.121(3), 339–344 (2013).
  • Agarwal V , BellGW , NamJW , BartelDP. Predicting effective microRNA target sites in mammalian mRNAs. Elife4, e05005 (2015).
  • Szklarczyk D , GableAL , LyonDet al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. NAR47, D607–D613 (2019).
  • Von Mering C , JensenLJ , SnelBet al. STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res.33(Database issue), D433–D437 (2005).
  • Gonzalez TL , SunT , KoeppelAFet al. Sex differences in the late first trimester human placenta transcriptome. Biol. Sex. Differ.9, 4 (2018).
  • Cai M , KolluruGK , AhmedAet al. Small molecule, big prospects: MicroRNA in pregnancy and its complications. J. Pregnancy (2017). https://doi.org/10.1155/2017/6972732
  • Yang Q , GuW-W , GuYet al. Association of the peripheral blood levels of circulating microRNAs with both recurrent miscarriage and the outcomes of embryo transfer in an in vitro fertilization process. J. Transl. Med.16 (2018).
  • Li H , GeQ , GuoL , LuZ. Maternal plasma miRNAs expression in preeclamptic pregnancies. Biomed. Res. Int.2013, 970265 (2013).
  • Li L , HouA , GaoXet al. Lentivirus-mediated miR-23a overexpression induces trophoblast cell apoptosis through inhibiting X-linked inhibitor of apoptosis. Biomed. Pharmacother.94, 412–417 (2017).
  • Morales-Prieto DM , Ospina-PrietoS , ChaiwangyenW , SchoenlebenM , MarkertUR. Pregnancy-associated miRNA-clusters. J. Reprod. Immunol.97(1), 51–61 (2013).
  • Wommack JC , TrzeciakowskiJP , MirandaRC , StoweRP , RuizRJ. Micro RNA clusters in maternal plasma are associated with preterm birth and infant outcomes. PloS One13(6), (2018).
  • Yang P , WuZ , MaC , PanN , WangY , YanL. Endometrial miR-543 is downregulated during the implantation window in women with endometriosis-related infertility. Reprod. Sci.26(7), 900–908 (2019).
  • Motawi TMK , SabryD , MauriceNW , RizkaSM. Role of mesenchymal stem cells exosomes derived microRNAs; miR-136, miR-494 and miR-495 in pre-eclampsia diagnosis and evaluation. Arch. Biochem. Biophys.659, 13–21 (2018).
  • Kontomanolis EN , KalagasidouS , FasoulakisZ. MicroRNAs as potential serum biomarkers for early detection of ectopic pregnancy. Cureus10(3), e2344 (2019).
  • Zhao Z , ZhaoQ , WarrickJet al. Circulating microRNA miR-323-3p as a biomarker of ectopic pregnancy. Clin.Chem.58(5), 896–905 (2012).
  • Larocca J , BinderAM , McelrathTF , MichelsKB. First-trimester urine concentrations of phthalate metabolites and phenols and placenta miRNA expression in a cohort of U.S. women. Environ. Health Perspect.124(3), 380- 387 (2016).
  • Hu E , DingL , MiaoHet al. MiR-30a attenuates immunosuppressive functions of IL-1β-elicited mesenchymal stem cells via targeting TAB3. FEBS Lett.589(24), 3899–3907 (2015).
  • Dai Y , QiuZ , DiaoZet al. MicroRNA-155 inhibits proliferation and migration of human extravillous trophoblast derived HTR-8/SVneo cells via down-regulating cyclin D1. Placenta33(10), 824–829 (2012).
  • Cheng W , LiuT , JiangFet al. microRNA-155 regulates angiotensin II type 1 receptor expression in umbilical vein endothelial cells from severely pre-eclamptic pregnant women. Int. J. Mol. Med.27(3), 393–399 (2011).
  • Li X , LiC , DongX , GouW. MicroRNA-155 inhibits migration of trophoblast cells and contributes to the pathogenesis of severe preeclampsia by regulating endothelial nitric oxide synthase. Mol. Med. Rep.10(1), 550–554 (2014).
  • Zhang Y , DiaoZ , SuLet al. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. Am. J. Obstet. Gynecol.202(5), 466.e461–e467 (2010).
  • Andraweera PH , DekkerGA , RobertsCT. The vascular endothelial growth factor family in adverse pregnancy outcomes. Hum. Reprod. Update18(4), 436–457 (2012).
  • Muralimanoharan S , MaloyanA , MyattL. Evidence of sexual dimorphism in the placental function with severe preeclampsia. Placenta34(12), 1183–11892013).
  • Buckberry S , Bianco-MiottoT , RobertsCT. Imprinted and X-linked non-coding RNAs as potential regulators of human placental function. Epigenetics9(1), 81–89 (2014).
  • Malnou EC , UmlaufD , MouyssetM , CavailléJ. Imprinted MicroRNA gene clusters in the evolution, development, and functions of mammalian placenta. Front. Genet.9(706), 2019).
  • Fu G , BrkićJ , HayderH , PengC. MicroRNAs in human placental development and pregnancy complications. Int. J. Mol. Sci.14, 5519–5544 (2013).
  • Challis JR , LockwoodCJ , MyattL , NormanJE , StraussJF3rd , PetragliaF. Inflammation and pregnancy. Reprod. Sci.16(2), 206–215 (2009).
  • Levy R . The role of apoptosis in preeclampsia. Isr. Med. Assoc. J.7(3), 178–181 (2005).
  • Ruan Y , LiY , LiuY , ZhouJ , WangX , ZhangW. Investigation of optimal pathways for preeclampsia using network-based guilt by association algorithm. Exp. Ther. Med.4139–4143 (2019).
  • Uuskula L , MannikJ , RullKet al. Mid-gestational gene expression profile in placenta and link to pregnancy complications. PloS One7(11), e49248 (2012).
  • Dogan K , SalihogluO , SeverN , TombulT , SariE , YaL. Do placental histopathologic characteristics differ with gestational ages in preterm and term deliveries? Fetal Pediatr. Pathol.34(6), 365–374 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.