428
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Alteration of N6-Methyladenosine Epitranscriptome Profile in Unilateral Ureteral Obstructive Nephropathy

, ORCID Icon, , & ORCID Icon
Pages 1157-1173 | Received 31 Mar 2020, Accepted 29 May 2020, Published online: 16 Jun 2020

References

  • Uhlig K , BernsJS , KestenbaumBet al. KDOQI US commentary on the 2009 KDIGO Clinical Practice Guideline for the Diagnosis, Evaluation and Treatment of CKD-Mineral and Bone Disorder (CKD-MBD). Am. J. Kidney Dis.55(5), 773–799 (2010).
  • Martinez-Klimova E , Aparicio-TrejoOE , TapiaE , Pedraza-ChaverriJ. Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomolecules9(4), 141 (2019).
  • Cheng J , TruongLD , WuX , KuhlD , LangF , DuJ. Serum- and glucocorticoid-regulated kinase 1 is upregulated following unilateral ureteral obstruction causing epithelial-mesenchymal transition. Kidney Int.78(7), 668–678 (2010).
  • Iwano M , PliethD , DanoffTM , XueC , OkadaH , NeilsonEG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest.110(3), 341–350 (2002).
  • Chevalier RL , KimA , ThornhillBA , WolstenholmeJT. Recovery following relief of unilateral ureteral obstruction in the neonatal rat. Kidney Int.55(3), 793–807 (1999).
  • Tapmeier TT , BrownKL , TangZ , SacksSH , SheerinNS , WongW. Reimplantation of the ureter after unilateral ureteral obstruction provides a model that allows functional evaluation. Kidney Int.73(7), 885–889 (2008).
  • Chaabane W , PraddaudeF , BuleonMet al. Renal functional decline and glomerulotubular injury are arrested but not restored by release of unilateral ureteral obstruction (UUO). Am. J. Physiol. Renal Physiol.304(4), F432–439 (2013).
  • Venkatachalam MA , WeinbergJM , KrizW , BidaniAK. Failed tubule recovery, AKI-CKD transition and kidney disease progression. J. Am. Soc. Nephrol.26(8), 1765–1776 (2015).
  • Chau BN , XinC , HartnerJet al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med.4(121), 121ra118 (2012).
  • Fontecha-Barriuso M , Martin-SanchezD , Ruiz-AndresOet al. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol. Dial. Transplant.33(11), 1875–1886 (2018).
  • Wang P , LuoML , SongEet al. Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway. Sci. Transl. Med.10(462), eaat2039 (2018).
  • Wang X , ZhaoBS , RoundtreeIAet al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell161(6), 1388–1399 (2015).
  • Yang Y , HsuPJ , ChenYS , YangYG. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res.28(6), 616–624 (2018).
  • Roundtree IA , EvansME , PanT , HeC. Dynamic RNA modifications in gene expression regulation. Cell169(7), 1187–1200 (2017).
  • Shen F , HuangW , HuangJTet al. Decreased N(6)-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5. J. Clin. Endocrinol. Metab.100(1), E148–154 (2015).
  • Deng X , SuR , WengH , HuangH , LiZ , ChenJ. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res.28(5), 507–517 (2018).
  • Mathiyalagan P , AdamiakM , MayourianJet al. FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation139(4), 518–532 (2019).
  • Hubacek JA , ViklickyO , DlouhaDet al. The FTO gene polymorphism is associated with end-stage renal disease: two large independent case-control studies in a general population. Nephrol. Dial. Transplant.27(3), 1030–1035 (2012).
  • Spoto B , Mattace-RasoF , SijbrandsEet al. The fat-mass and obesity-associated gene (FTO) predicts mortality in chronic kidney disease of various severity. Nephrol. Dial. Transplant.27(Suppl. 4), iv58–62 (2012).
  • Satoh M , KashiharaN , YamasakiYet al. Renal interstitial fibrosis is reduced in angiotensin II type 1a receptor-deficient mice. J. Am. Soc. Nephrol.12(2), 317–325 (2001).
  • Ping XL , SunBF , WangLet al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res.24(2), 177–189 (2014).
  • Kuppers DA , AroraS , LimYet al. N(6)-methyladenosine mRNA marking promotes selective translation of regulons required for human erythropoiesis. Nat. Commun.10(1), 4596 (2019).
  • Sorci M , IannielloZ , CrucianiSet al. METTL3 regulates WTAP protein homeostasis. Cell Death Dis9(8), 796 (2018).
  • Little NA , HastieND , DaviesRC. Identification of WTAP, a novel Wilms’ tumour 1-associating protein. Hum. Mol. Genet.9(15), 2231–2239 (2000).
  • Barisoni L , BruggemanLA , MundelP , D’agatiVD , KlotmanPE. HIV-1 induces renal epithelial dedifferentiation in a transgenic model of HIV-associated nephropathy. Kidney Int.58(1), 173–181 (2000).
  • Zhang J , TsoiH , LiXet al. Carbonic anhydrase IV inhibits colon cancer development by inhibiting the Wnt signalling pathway through targeting the WTAP-WT1-TBL1 axis. Gut65(9), 1482–1493 (2016).
  • Hosono S , GrossI , EnglishMA , HajraKM , FearonER , LichtJD. E-cadherin is a WT1 target gene. J. Biol. Chem.275(15), 10943–10953 (2000).
  • Mazzei LJ , GarciaIM , AltamiranoL , DochertyNG , ManuchaW. Rosuvastatin preserves renal structure following unilateral ureteric obstruction in the neonatal rat. Am. J. Nephrol.35(2), 103–113 (2012).
  • Loos RJ , YeoGS. The bigger picture of FTO: the first GWAS-identified obesity gene. Nat. Rev. Endocrinol.10(1), 51–61 (2014).
  • Wang CY , ShieSS , TsaiMLet al. FTO modulates fibrogenic responses in obstructive nephropathy. Sci. Rep.6, 18874 (2016).
  • Fukasawa H , YamamotoT , TogawaAet al. Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proc. Natl Acad. Sci. USA101(23), 8687–8692 (2004).
  • Hong S , LimS , LiAGet al. Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat. Immunol.8(5), 504–513 (2007).
  • Chung AC , HuangXR , ZhouL , HeuchelR , LaiKN , LanHY. Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice. Nephrol. Dial. Transplant.24(5), 1443–1454 (2009).
  • Nakao A , AfrakhteM , MorenAet al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-β signalling. Nature389(6651), 631–635 (1997).
  • Liu FY , LiXZ , PengYM , LiuH , LiuYH. Arkadia-Smad7-mediated positive regulation of TGF-β signaling in a rat model of tubulointerstitial fibrosis. Am. J. Nephrol.27(2), 176–183 (2007).
  • Feng M , TangPM , HuangXRet al. TGF-β mediates renal fibrosis via the Smad3-Erbb4-IR long noncoding RNA axis. Mol. Ther.26(1), 148–161 (2018).
  • Sun Q , MiaoJ , LuoJet al. The feedback loop between miR-21, PDCD4 and AP-1 functions as a driving force for renal fibrogenesis. J. Cell Sci.131(6), jcs202317 (2018).
  • Dirocco DP , KobayashiA , TaketoMM , McmahonAP , HumphreysBD. Wnt4/beta-catenin signaling in medullary kidney myofibroblasts. J. Am. Soc. Nephrol.24(9), 1399–1412 (2013).
  • Chang Y , LauWL , JoHet al. Pharmacologic Blockade of alphavbeta1 integrin ameliorates renal failure and fibrosis In Vivo. J. Am. Soc. Nephrol.28(7), 1998–2005 (2017).
  • Grande MT , Sanchez-LaordenB , Lopez-BlauCet al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med.21(9), 989–997 (2015).
  • Lovisa S , LebleuVS , TampeBet al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med.21(9), 998–1009 (2015).
  • Shin GT , KimDR , LimJE , YimH , KimH. Upregulation and function of GADD45gamma in unilateral ureteral obstruction. Kidney Int.73(11), 1251–1265 (2008).
  • Wolf G , MentzelS , AssmannKJ. Aminopeptidase A: a key enzyme in the intrarenal degradation of angiotensin II. Exp. Nephrol.5(5), 364–369 (1997).
  • Berulava T , BuchholzE , ElerdashviliVet al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur. J. Heart Fail.22(1), 54–66 (2020).
  • Choi J , IeongKW , DemirciHet al. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol.23(2), 110–115 (2016).
  • Li T , HuPS , ZuoZet al. METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol. Cancer18(1), 112 (2019).
  • Lin X , ChaiG , WuYet al. RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat. Commun.10(1), 2065 (2019).
  • Mao Y , DongL , LiuXMet al. m(6)A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat. Commun.10(1), 5332 (2019).
  • Klahr S , MorrisseyJ. Obstructive nephropathy and renal fibrosis. Am. J. Physiol. Renal Physiol.283(5), F861–F875 (2002).
  • Hao J , HuH , JiangZet al. microRNA-670 modulates Igf2bp1 expression to regulate RNA methylation in parthenogenetic mouse embryonic development. Sci. Rep.10(1), 4782 (2020).
  • Nakano M , OndoK , TakemotoS , FukamiT , NakajimaM. Methylation of adenosine at the N(6) position post-transcriptionally regulates hepatic P450s expression. Biochem. Pharmacol.171, 113697 (2020).
  • Bachellerie JP , AmalricF , CabocheM. Biosynthesis and utilization of extensively undermethylated poly(A)+ RNA in CHO cells during a cycloleucine treatment. Nucleic Acids Res.5(8), 2927–2943 (1978).
  • Chiang PK . Conversion of 3T3-L1 fibroblasts to fat cells by an inhibitor of methylation: effect of 3-deazaadenosine. Science211(4487), 1164–1166 (1981).
  • Caboche M , BachellerieJP. RNA methylation and control of eukaryotic RNA biosynthesis. Effects of cycloleucine, a specific inhibitor of methylation, on ribosomal RNA maturation. Eur. J. Biochem.74(1), 19–29 (1977).
  • Camper SA , AlbersRJ , CowardJK , RottmanFM. Effect of undermethylation on mRNA cytoplasmic appearance and half-life. Mol. Cell. Biol.4(3), 538–543 (1984).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.