1,603
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel Methylated DNA Markers Accurately Discriminate Lynch Syndrome Associated Colorectal Neoplasia

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 2173-2187 | Received 02 Apr 2020, Accepted 26 Oct 2020, Published online: 22 Dec 2020

References

  • Win AK , JenkinsMA , DowtyJGet al. Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol Biomarkers Prev.26(3), 404–412 (2017).
  • Boland PM , YurgelunMB , BolandCR. Recent progress in Lynch syndrome and other familial colorectal cancer syndromes. CA Cancer J. Clin.68(3), 217–231 (2018).
  • Sinicrope FA . Lynch syndrome-associated colorectal cancer. N. Engl. J. Med.379(8), 764–773 (2018).
  • Watson P , VasenHFA , MecklinJPet al. The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int. J. Cancer123(2), 444–449 (2008).
  • Kastrinos F , StoffelEM. History, genetics, and strategies for cancer prevention in Lynch syndrome. Clin. Gastroenterol. Hepatol.12(5), 715–727 (2014).
  • Moller P , SeppalaTT , BernsteinIet al. Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the Prospective Lynch Syndrome Database. Gut67(7), 1306–1316 (2018).
  • Ahadova A , GallonR , GebertJet al. Three molecular pathways model colorectal carcinogenesis in Lynch syndrome. Int. J. Cancer143(1), 139–150 (2018).
  • Edelstein DL , AxilbundJ , BaxterMet al. Rapid development of colorectal neoplasia in patients with Lynch syndrome. Clin. Gastroenterol. Hepatol.9(4), 340–343 (2011).
  • Giardiello FM , AllenJI , AxilbundJEet al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US multi-society task force on colorectal cancer. Am. J. Gastroenterol.109(8), 1159–1179 (2014).
  • Baxter NN , GoldwasserMA , PaszatLF , SaskinR , UrbachDR , RabeneckL. Association of colonoscopy and death from colorectal cancer. Ann. Intern. Med.150(1), 1–8 (2009).
  • Engel C , VasenHF , SeppalaTet al. No difference in colorectal cancer incidence or stage at detection by colonoscopy among 3 countries with different Lynch syndrome surveillance policies. Gastroenterology155(5), 1400–1409 (2018).
  • Kahi CJ , HewettDG , NortonDL , EckertGJ , RexDK. Prevalence and variable detection of proximal colon serrated polyps during screening colonoscopy. Clin. Gastroenterol. Hepatol.9(1), 42–46 (2011).
  • Kaminski MF , RegulaJ , KraszewskaEet al. Quality indicators for colonoscopy and the risk of interval cancer. N. Engl. J. Med.362(19), 1795–1803 (2010).
  • Corley DA , JensenCD , MarksARet al. Adenoma detection rate and risk of colorectal cancer and death. N. Engl. J. Med.370(14), 1298–1306 (2014).
  • Giardiello FM , AllenJI , AxilbundJEet al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US multi-society task force on colorectal cancer. Dis. Colon. Rectum.57(8), 1025–1048 (2014).
  • Johnson DH , KisielJB , BurgerKNet al. Multitarget stool DNA test: clinical performance and impact on yield and quality of colonoscopy for colorectal cancer screening. Gastrointest. Endosc.85(3), 657–665 (2017).
  • Nishihara R , WuK , LochheadPet al. Long-term colorectal-cancer incidence and mortality after lower endoscopy. N. Engl. J. Med.369(12), 1095–1105 (2013).
  • Samadder NJ , CurtinK , TuohyTMet al. Characteristics of missed or interval colorectal cancer and patient survival: a population-based study. Gastroenterology146(4), 950–960 (2014).
  • Brenner H , HoffmeisterM , ArndtV , StegmaierC , AltenhofenL , HaugU. Protection from right- and left-sided colorectal neoplasms after colonoscopy: population-based study. J. Natl. Cancer Inst.102(2), 89–95 (2010).
  • Newton K , GreenK , LallooF , EvansDG , HillJ. Colonoscopy screening compliance and outcomes in patients with Lynch syndrome. Colorectal. Dis.17(1), 38–46 (2015).
  • Sahnane N , MagnoliF , BernasconiBet al. Aberrant DNA methylation profiles of inherited and sporadic colorectal cancer. Clin. Epigenetics7, 131 (2015).
  • Goel A , XicolaRM , NguyenTPet al. Aberrant DNA methylation in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Gastroenterology138(5), 1854–1862 (2010).
  • Kaz A , KimYH , DzieciatkowskiSet al. Evidence for the role of aberrant DNA methylation in the pathogenesis of Lynch syndrome adenomas. Int. J. Cancer120(9), 1922–1929 (2007).
  • Chen CH , ShengJiang S , HsiehLLet al. DNA Methylation identifies loci distinguishing hereditary nonpolyposis colorectal cancer without germ-line MLH1/MSH2 mutation from sporadic colorectal cancer. Clin. Transl. Gastroenterol.7(12), e208 (2016).
  • Lidgard GP , DomanicoMJ , BruinsmaJJet al. Clinical performance of an automated stool DNA assay for detection of colorectal neoplasia. Clin. Gastroenterol. Hepatol.11(10), 1313–1318 (2013).
  • Imperiale TF , RansohoffDF , ItzkowitzSHet al. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med.370(14), 1287–1297 (2014).
  • Redwood DG , AsayED , BlakeIDet al. Stool DNA Testing for screening detection of colorectal neoplasia in Alaska native people. Mayo. Clin. Proc.91(1), 61–70 (2016).
  • Sweetser S , AhlquistDA. Multi-target stool DNA test: is the future here?Curr. Gastroenterol. Rep.18(6), 30 (2016).
  • Ballester V , GiakoumopoulosM , YabTCet al. Sa1921 molecular detection of colorectal neoplasia: do markers that target acquired DNA alterations in sporadic cases also discriminate Lynch syndrome cases? Gastroenterology 148(4), S355 (2015).
  • Kisiel JB , KleppP , AllawiHTet al. Analysis of DNA methylation at specific loci in stool samples detects colorectal cancer and high-grade dysplasia in patients with inflammatory bowel disease. Clin. Gastroenterol. Hepatol.17(5), 914–921 (2019).
  • Taylor WR , KisielJB , YabTCet al. 109 Discovery of novel DNA methylation markers for the detection of colorectal neoplasia: selection by methylome-wide analysis. Gastroenterology146(5), S30 (2014).
  • Anderson BW , SuhYS , ChoiBet al. Detection of gastric cancer with novel methylated DNA markers: discovery, tissue validation, and pilot testing in plasma. Clin. Cancer Res.24(22), 5724–5734 (2018).
  • Kisiel JB , RaimondoM , TaylorWRet al. New DNA methylation markers for pancreatic cancer: discovery, tissue validation, and pilot testing in pancreatic juice. Clin. Cancer Res.21(19), 4473–4481 (2015).
  • MethPrimer2.0. (2020). http://www.urogene.org/methprimer2/ (Accessed 15October2015).
  • Zou H , AllawiH , CaoXet al. Quantification of methylated markers with a multiplex methylation-specific technology. Clin. Chem.58(2), 375–383 (2012).
  • Brikun I , NusskernD , GillenDet al. A panel of DNA methylation markers reveals extensive methylation in histologically benign prostate biopsy cores from cancer patients. Biomark Res.2(1), 25 (2014).
  • Chaudhary A , HiltonMB , SeamanSet al. TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell21(2), 212–226 (2012).
  • Chen YN , ChenH , XuY , ZhangX , LuoY. Expression of pituitary homeobox 1 gene in human gastric carcinogenesis and its clinicopathological significance. World J. Gastroenterol.14(2), 292–297 (2008).
  • Dai D , WangH , ZhuL , JinH , WangX. N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis.9(2), 124 (2018).
  • Hamidov Z , Altendorf-HofmannA , ChenY , SettmacherU , PetersenI , KnoselT. Reduced expression of desmocollin 2 is an independent prognostic biomarker for shorter patients survival in pancreatic ductal adenocarcinoma. J. Clin. Pathol.64(11), 990–994 (2011).
  • Knosel T , ChenY , HotovyS , SettmacherU , Altendorf-HofmannA , PetersenI. Loss of desmocollin 1–3 and homeobox genes PITX1 and CDX2 are associated with tumor progression and survival in colorectal carcinoma. Int. J. Colorectal. Dis.27(11), 1391–1399 (2012).
  • Kwok SC , LiuX , MangelP , DaskalI. PTX1(ERGIC2)-VP22 fusion protein upregulates interferon-beta in prostate cancer cell line PC-3. DNA Cell Biol.25(9), 523–529 (2006).
  • Liu Y , HydeAS , SimpsonMA , BaryckiJJ. Emerging regulatory paradigms in glutathione metabolism. Adv. Cancer Res.122, 69–101 (2014).
  • Lord RV , BrabenderJ , WickramasingheKet al. Increased CDX2 and decreased PITX1 homeobox gene expression in Barrett’s esophagus and Barrett’s-associated adenocarcinoma. Surgery138(5), 924–931 (2005).
  • Lu J , KsendzovskyA , YangCet al. CNTF receptor subunit alpha as a marker for glioma tumor-initiating cells and tumor grade: laboratory investigation. J. Neurosurg.117(6), 1022–1031 (2012).
  • Nakabayashi M , OsakiM , KodaniIet al. PITX1 is a reliable biomarker for predicting prognosis in patients with oral epithelial dysplasia. Oncol. Lett.7(3), 750–754 (2014).
  • Nikitenko LL , LeekR , HendersonSet al. The G-protein-coupled receptor CLR is upregulated in an autocrine loop with adrenomedullin in clear cell renal cell carcinoma and associated with poor prognosis. Clin. Cancer Res.19(20), 5740–5748 (2013).
  • Nouguerede E , BerenguerC , GarciaSet al. Expression of adrenomedullin in human colorectal tumors and its role in cell growth and invasion in vitro and in xenograft growth in vivo. Cancer Med.2(2), 196–207 (2013).
  • Parris TZ , AzizL , KovacsAet al. Clinical relevance of breast cancer-related genes as potential biomarkers for oral squamous cell carcinoma. BMC Cancer14, 324 (2014).
  • Qi DL , OhhiraT , FujisakiCet al. Identification of PITX1 as a TERT suppressor gene located on human chromosome 5. Mol. Cell Biol.31(8), 1624–1636 (2011).
  • Ramachandran V , ArumugamT , HwangRF , GreensonJK , SimeoneDM , LogsdonCD. Adrenomedullin is expressed in pancreatic cancer and stimulates cell proliferation and invasion in an autocrine manner via the adrenomedullin receptor, ADMR. Cancer Res67(6), 2666–2675 (2007).
  • Sloane MA , WongJW , PereraDet al. Epigenetic inactivation of the candidate tumor suppressor USP44 is a frequent and early event in colorectal neoplasia. Epigenetics9(8), 1092–1100 (2014).
  • Wei J , LiG , ZhangJet al. Integrated analysis of genome-wide DNA methylation and gene expression profiles identifies potential novel biomarkers of rectal cancer. Oncotarget7(38), 62547–62558 (2016).
  • Dixit D , XieQ , RichJN , ZhaoJC. Messenger RNA methylation regulates glioblastoma tumorigenesis. Cancer Cell31(4), 474–475 (2017).
  • He L , LiJ , WangXet al. The dual role of N6-methyladenosine modification of RNAs is involved in human cancers. J. Cell Mol. Med.22(10), 4630–4639 (2018).
  • Zhang S , ZhaoBS , ZhouAet al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell31(4), 591–606 (2017).
  • Bjornstad LG , MezaTJ , OtterleiM , OlafsrudSM , Meza-ZepedaLA , FalnesPO. Human ALKBH4 interacts with proteins associated with transcription. PLoS ONE7(11), e49045 (2012).
  • Fedeles BI , SinghV , DelaneyJC , LiD , EssigmannJM. The AlkB family of Fe(II)/alpha-Ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J. Biol. Chem.290(34), 20734–20742 (2015).
  • Ahlquist DA . Universal cancer screening: revolutionary, rational, and realizable. NPJ Precis. Oncol.2, 23 (2018).
  • Qin Y , WuCW , TaylorWRet al. Discovery, validation, and application of novel methylated DNA markers for detection of esophageal cancer in plasma. Clin. Cancer Res.25(24), 7396–7404 (2019).
  • Kisiel JB , DukekBA , RVSRKet al. Hepatocellular carcinoma detection by plasma methylated DNA: discovery, Phase I pilot, and Phase II clinical validation. Hepatology69(3), 1180–1192 (2019).
  • Bakkum-Gamez JN , KisielJB , SlettedahlSWet al. Discovery and validation of novel DNA methylation markers for the detection of endometrial cancer: selection by methylome-wide analysis. Gynecologic Oncol.154, 71 (2019).
  • Peluso MEM , MunniaA , TarocchiMet al. Oxidative DNA damage and formalin-fixation procedures. Toxicol. Res.3(5), 341–349 (2014).
  • Keogh LA , NivenH , RutsteinA , FlanderL , GaffC , JenkinsM. Choosing not to undergo predictive genetic testing for hereditary colorectal cancer syndromes: expanding our understanding of decliners and declining. J. Behav. Med.40(4), 583–594 (2017).
  • Leenen CH , HeijerM , VanDer Meer C , KuipersEJ , Van LeerdamME , WagnerA. Genetic testing for Lynch syndrome: family communication and motivation. Fam. Cancer15(1), 63–73 (2016).
  • Heigh RI , YabTC , TaylorWRet al. Detection of colorectal serrated polyps by stool DNA testing: comparison with fecal immunochemical testing for occult blood (FIT). PLoS One9(1), e85659 (2014).
  • Andersen SH , LykkeE , FolkerMB , BernsteinI , HolckS. Sessile serrated polyps of the colorectum are rare in patients with Lynch syndrome and in familial colorectal cancer families. Fam. Cancer7(2), 157–162 (2008).
  • Snover DC . Update on the serrated pathway to colorectal carcinoma. Hum. Pathol.42(1), 1–10 (2011).