66
Views
0
CrossRef citations to date
0
Altmetric
Preliminary Communication

Role of rs10406069 in miR-5196 in Hyperdiploid Childhood Acute Lymphoblastic Leukemia

ORCID Icon, , , ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1949-1955 | Received 16 Apr 2020, Accepted 04 Oct 2020, Published online: 27 Nov 2020

References

  • Greaves M . Infection, immune responses and the aetiology of childhood leukaemia. Nat. Rev. Cancer6(3), 193–203 (2006).
  • Woo JS , AlbertiMO , TiradoCA. Childhood B-acute lymphoblastic leukemia: a genetic update. Exp. Hematol. Oncol.3, 16 (2014).
  • Williams LA , YangJJ , HirschBA , MarcotteEL , SpectorLG. Is there etiologic heterogeneity between subtypes of childhood acute lymphoblastic leukemia? a review of variation in risk by subtype. Cancer Epidemiol. Biomarkers Prev.28(5), 846–856 (2019).
  • Inaba H , GreavesM , MullighanCG. Acute lymphoblastic leukaemia. Lancet381(9881), 1943–1955 (2013).
  • Gutierrez-Camino A , Martin-GuerreroI , García-OradA. Genetic susceptibility in childhood acute lymphoblastic leukemia. Med. Oncol.34(10), 179 (2017).
  • Treviño LR , YangW , FrenchDet al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat. Genet.41(9), 1001–1005 (2009).
  • Xu H , YangW , Perez-AndreuVet al. Novel susceptibility variants at 10p12.31–12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J. Natl Cancer Inst.105(10), 733–742 (2013).
  • Ellinghaus E , StanullaM , RichterGet al. Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia. Leukemia26(5), 902–909 (2012).
  • Tak YG , FarnhamPJ. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin8, 57 (2015).
  • Cano-Gamez E , TrynkaG. From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front. Genet.11, 424 (2020).
  • Ryan BM . microRNAs in cancer susceptibility. Adv. Cancer Res.135, 151–171 (2017).
  • Johanson TM , SkinnerJP , KumarA , ZhanY , LewAM , ChongMM. The role of microRNAs in lymphopoiesis. Int. J. Hematol.100(3), 246–253 (2014).
  • Musilova K , MrazM. MicroRNAs in B-cell lymphomas: how a complex biology gets more complex. Leukemia29(5), 1004–1017 (2015).
  • Gutierrez-Camino A , Garcia-ObregonS , Lopez-LopezE , AstigarragaI , Garcia-OradA. miRNA deregulation in childhood acute lymphoblastic leukemia: a systematic review. Epigenomics12(1), 69–80 (2020).
  • Ryan BM , RoblesAI , HarrisCC. Genetic variation in microRNA networks: the implications for cancer research. Nat. Rev. Cancer10(6), 389–402 (2010).
  • Tong N , XuB , ShiDet al. Hsa-miR-196a2 polymorphism increases the risk of acute lymphoblastic leukemia in Chinese children. Mutat. Res.759, 16–21 (2014).
  • Gutierrez-Camino A , Lopez-LopezE , Martin-GuerreroIet al. Noncoding RNA-related polymorphisms in pediatric acute lymphoblastic leukemia susceptibility. Pediatr. Res.75(6), 767–773 (2014).
  • Gutierrez-Camino A , Martin-GuerreroI , DolzanVet al. Involvement of SNPs in miR-3117 and miR-3689d2 in childhood acute lymphoblastic leukemia risk. Oncotarget9(33), 22907–22914 (2018).
  • Hasani SS , HashemiM , Eskandari-NasabE , NaderiM , OmraniM , Sheybani-NasabM. A functional polymorphism in the miR-146a gene is associated with the risk of childhood acute lymphoblastic leukemia: a preliminary report. Tumour Biol.35(1), 219–225 (2014).
  • Tong N , ChuH , WangMet al. Pri-miR-34b/c rs4938723 polymorphism contributes to acute lymphoblastic leukemia susceptibility in Chinese children. Leuk. Lymphoma57(6), 1436–1441 (2016).
  • Marcoux S , DrouinS , LaverdièreCet al. The PETALE study: late adverse effects and biomarkers in childhood acute lymphoblastic leukemia survivors. Pediatr. Blood Cancer64(6), doi: 10.1002/pbc.26361 (2017).
  • Chou CH , ChangNW , ShresthaSet al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res.44(D1), D239–247 (2016).
  • Lajoie M , DrouinS , CaronMet al. Specific expression of novel long non-coding RNAs in high-hyperdiploid childhood acute lymphoblastic leukemia. PLoS ONE12(3), e0174124 (2017).
  • Anders S , PylPT , HuberW. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics31(2), 166–169 (2015).
  • Trapnell C , WilliamsBA , PerteaGet al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol.28(5), 511–515 (2010).
  • Martínez ME , CruzGI , BrewsterAM , BondyML , ThompsonPA. What can we learn about disease etiology from case-case analyses? Lessons from breast cancer. Cancer Epidemiol. Biomarkers Prev.19(11), 2710–2714 (2010).
  • Gong J , TongY , ZhangHMet al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum. Mutat.33(1), 254–263 (2012).
  • Schotte D , AkbariMoqadam F , Lange-TurenhoutEAet al. Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia. Leukemia25(9), 1389–1399 (2011).
  • Huang J , TengL , LiuTet al. Identification of a novel serine/threonine kinase that inhibits TNF-induced NF-kappaB activation and p53-induced transcription. Biochem. Biophys. Res. Commun.309(4), 774–778 (2003).
  • Khanna N , FangY , YoonMS , ChenJ. XPLN is an endogenous inhibitor of mTORC2. Proc. Natl Acad. Sci. USA110(40), 15979–15984 (2013).
  • Fazio G , MassaV , GrioniAet al. First evidence of a paediatric patient with Cornelia de Lange syndrome with acute lymphoblastic leukaemia. J. Clin. Pathol.72(8), 558–561 (2019).
  • Ma H , QaziS , OzerZ , GaynonP , ReamanGH , UckunFM. CD22 exon 12 deletion is a characteristic genetic defect of therapy-refractory clones in paediatric acute lymphoblastic leukaemia. Br. J. Haematol.156(1), 89–98 (2012).
  • Uckun FM , GoodmanP , MaH , DibirdikI , QaziS. CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia. Proc. Natl Acad. Sci. USA107(39), 16852–16857 (2010).
  • Sim NL , KumarP , HuJ , HenikoffS , SchneiderG , NgPC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res.40(Web Server issue), W452–W457 (2012).
  • Adzhubei IA , SchmidtS , PeshkinLet al. A method and server for predicting damaging missense mutations. Nat. Methods7(4), 248–249 (2010).
  • Migliorini G , FiegeB , HoskingFJet al. Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype. Blood122(19), 3298–3307 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.