4,433
Views
1
CrossRef citations to date
0
Altmetric
Perspective

Potential Use of Noncoding RNAs and Innovative Therapeutic Strategies to Target the 5’UTR of SARS-CoV-2

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1349-1361 | Received 20 Apr 2020, Accepted 31 Jul 2020, Published online: 02 Sep 2020

References

  • Zhang L , LiuY. Potential interventions for novel coronavirus in China: a systematic review. J. Med. Virol.92(5), 479–490 (2020).
  • Te HS , RandallG , JensenDM. Mechanism of action of ribavirin in the treatment of chronic hepatitis C. Gastroenterol. Hepatol. (NY)3(3), 218–225 (2007).
  • Voshavar C . Protease inhibitors for the treatment of HIV/AIDS: recent advances and future challenges. Curr. Top. Med. Chem.19(18), 1571–1598 (2019).
  • Sheahan TP , SimsAC , GrahamRLet al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med.9(396), 10.1126/scitranslmed.aal3653 (2017) ( Epub ahead of print).
  • Wang M , CaoR , ZhangLet al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res30(3), 269–271 (2020).
  • Cao B , WangY , WenDet al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med.382(19), 1787–1799 (2020).
  • Chen Y , LiuQ , GuoD. Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol.92(4), 418–423 (2020).
  • Chan JF , KokKH , ZhuZet al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect.9(1), 221–236 (2020).
  • Zhou P , YangXL , WangXGet al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature579(7798), 270–273 (2020).
  • Stadler K , MasignaniV , EickmannMet al. SARS--beginning to understand a new virus. Nat. Rev. Microbiol.1(3), 209–218 (2003).
  • Yang D , LeibowitzJL. The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus Res.206, 120–133 (2015).
  • Fields BN , KnipeDM , HowleyPM , GriffinDE. HolmesKV(Ed.). Fields virology. CHAPTER 36 Coronaviruses. Lippincott Williams & Wilkins, PA, USA (2001).
  • Lai MM , CavanaghD. The molecular biology of coronaviruses. Adv. Virus Res.48, 1–100 (1997).
  • Makino S , StohlmanSA , LaiMM. Leader sequences of murine coronavirus mRNAs can be freely reassorted: evidence for the role of free leader RNA in transcription. Proc. Natl Acad. Sci. US.A83(12), 4204–4208 (1986).
  • Sawicki SG , SawickiDL. Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J. Virol.64(3), 1050–1056 (1990).
  • Sawicki SG , SawickiDL. A new model for coronavirus transcription. Adv. Exp. Med. Biol.440, 215–219 (1998).
  • Zeng FY , ChanCW , ChanMNet al. The complete genome sequence of severe acute respiratory syndrome coronavirus strain HKU-39849 (HK-39). Exp. Biol. Med. (Maywood)228(7), 866–873 (2003).
  • Li T , ZhangY , FuLet al. siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Ther.12(9), 751–761 (2005).
  • Marra MA , JonesSJ , AstellCRet al. The genome sequence of the SARS-associated coronavirus. Science300(5624), 1399–1404 (2003).
  • Wu CJ , HuangHW , LiuCY , HongCF , ChanYL. Inhibition of SARS-CoV replication by siRNA. Antiviral Res.65(1), 45–48 (2005).
  • Wu CJ , ChanYL. Antiviral applications of RNAi for coronavirus. Expert Opin. Investig. Drugs15(2), 89–97 (2006).
  • Zhang Y , LiT , FuLet al. Silencing SARS-CoV spike protein expression in cultured cells by RNA interference. FEBS Lett.560(1–3), 141–146 (2004).
  • Wang Y , CaoYL , YangF , ZhangY , WangSH , LiuL. Small interfering RNA effectively inhibits the expression of SARS coronavirus membrane gene at two novel targeting sites. Molecules15(10), 7197–7207 (2010).
  • Li BJ , TangQ , ChengDet al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med.11(9), 944–951 (2005).
  • Zheng BJ , GuanY , TangQet al. Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus. Antivir Ther.9(3), 365–374 (2004).
  • Levanova A , PoranenMM. RNA interference as a prospective tool for the control of human viral infections. Front. Microbiol.9, 2151 (2018).
  • Chang Z , HuZ. RNAi therapeutics: can siRNAs conquer SARS?Gene Ther.13(11), 871–872 (2006).
  • Taiaroa G , RawlinsonD , FeatherstoneLet al. Direct RNA sequencing and early evolution of SARS-CoV-2. bioRxiv doi:10.1101/2020.03.05.976167
  • Zhang JJ , HuangAL , ShiXL , ZhangXF. Promoter activity of SARS coronavirus 5′ UTR sequence in eukaryotic cells. Sichuan Da Xue Xue Bao Yi Xue Ban37(1), 5–9 (2006).
  • Sawicki SG , SawickiDL , SiddellSG. A contemporary view of coronavirus transcription. J. Virol.81(1), 20–29 (2007).
  • Cameron CE , GötteM , RaneyKD. SawickiSG(Ed.). Viral genome replication. Chapter 2 Coronavirus Genome Replication. Springer, NY, USA (2009).
  • Brian DA , BaricRS. Coronavirus genome structure and replication. Curr. Top. Microbiol. Immunol.287, 1–30 (2005).
  • Tan YW , HongW , LiuDX. Binding of the 5′-untranslated region of coronavirus RNA to zinc finger CCHC-type and RNA-binding motif 1 enhances viral replication and transcription. Nucleic Acids Res.40(11), 5065–5077 (2012).
  • Liu P , LiL , MillershipJJ , KangH , LeibowitzJL , GiedrocDP. A U-turn motif-containing stem-loop in the coronavirus 5′ untranslated region plays a functional role in replication. RNA13(5), 763–780 (2007).
  • Madhugiri R , KarlN , PetersenDet al. Structural and functional conservation of cis-acting RNA elements in coronavirus 5′-terminal genome regions. Virology517, 44–55 (2018).
  • Li L , KangH , LiuPet al. Structural lability in stem-loop 1 drives a 5′ UTR-3′ UTR interaction in coronavirus replication. J. Mol. Biol.377(3), 790–803 (2008).
  • Janssen HL , ReesinkHW , LawitzEJet al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med.368(18), 1685–1694 (2013).
  • Machlin ES , SarnowP , SaganSM. Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc. Natl Acad. Sci. USA108(8), 3193–3198 (2011).
  • Kertesz M , IovinoN , UnnerstallU , GaulU , SegalE. The role of site accessibility in microRNA target recognition. Nat. Genet.39(10), 1278–1284 (2007).
  • Ludwig N , LeidingerP , BeckerKet al. Distribution of miRNA expression across human tissues. Nucleic Acids Res.44(8), 3865–3877 (2016).
  • Bruscella P , BottiniS , BaudessonC , PawlotskyJM , FerayC , TrabucchiM. Viruses and miRNAs: more friends than foes. Front. Microbiol.8, 824 (2017).
  • Zou J , ShiPY. Strategies for Zika drug discovery. Curr. Opin. Virol.35, 19–26 (2019).
  • Pruijssers AJ , DenisonMR. Nucleoside analogues for the treatment of coronavirus infections. Curr. Opin. Virol.35, 57–62 (2019).
  • Edwards MR , BaslerCF. Current status of small molecule drug development for Ebola virus and other filoviruses. Curr. Opin. Virol.35, 42–56 (2019).
  • Du Pont V , PlemperRK , SchnellMJ. Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Curr. Opin. Virol.35, 1–13 (2019).
  • Brinton MA , PlemperRK. Editorial overview: antiviral strategies: antiviral drug development for single-stranded RNA viruses. Curr. Opin. Virol.35, iii–v (2019).
  • Haupenthal J , BaehrC , KiermayerS , ZeuzemS , PiiperA. Inhibition of RNAse A family enzymes prevents degradation and loss of silencing activity of siRNAs in serum. Biochem. Pharmacol.71(5), 702–710 (2006).
  • Perche F , TorchilinVP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J. Drug Deliv.2013, 705265 (2013).
  • Cohn L , DelamarreL. Dendritic cell-targeted vaccines. Front. Immunol.5, 255 (2014).
  • Lundstrom K . Self-replicating RNA viruses for RNA therapeutics. Molecules23(12), 10.3390/molecules23123310 (2018) ( Epub ahead of print).
  • Lundstrom K . Self-replicating RNA viral vectors in vaccine development and gene therapy. Future Virol.11(5), 345–356 (2016).
  • Bates JT , PickensJA , SchusterJEet al. Immunogenicity and efficacy of alphavirus-derived replicon vaccines for respiratory syncytial virus and human metapneumovirus in nonhuman primates. Vaccine34(7), 950–956 (2016).
  • Pardi N , HoganMJ , PelcRSet al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature543(7644), 248–251 (2017).
  • Grabbe S , HaasH , DikenM , KranzLM , LangguthP , SahinU. Translating nanoparticulate-personalized cancer vaccines into clinical applications: case study with RNA-lipoplexes for the treatment of melanoma. Nanomedicine (Lond.)11(20), 2723–2734 (2016).
  • Lundstrom K . Latest development on RNA-based drugs and vaccines. Future Sci. OA4(5), FSO300-2017-0151 (2018) ( Epub ahead of print).
  • Shen X , CoreyDR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res.46(4), 1584–1600 (2018).
  • de Fougerolles A , VornlocherHP , MaraganoreJ , LiebermanJ. Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov.6(6), 443–453 (2007).
  • Grimm D , StreetzKL , JoplingCLet al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature441(7092), 537–541 (2006).
  • Shen W , DeHoyos CL , MigawaMTet al. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat. Biotechnol.37(6), 640–650 (2019).
  • Swayze EE , SiwkowskiAM , WancewiczEVet al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res.35(2), 687–700 (2007).
  • Stanton R , SciabolaS , SalattoCet al. Chemical modification study of antisense gapmers. Nucleic Acid Ther.22(5), 344–359 (2012).
  • van Poelgeest EP , SwartRM , BetjesMGet al. Acute kidney injury during therapy with an antisense oligonucleotide directed against PCSK9. Am. J. Kidney Dis.62(4), 796–800 (2013).
  • Dutkiewicz M , GrunertHP , ZeichhardtH , LenaSW , WengelJ , KurreckJ. Design of LNA-modified siRNAs against the highly structured 5′ UTR of coxsackievirus B3. FEBS Lett.582(20), 3061–3066 (2008).
  • Laxton C , BradyK , MoschosSet al. Selection, optimization, and pharmacokinetic properties of a novel, potent antiviral locked nucleic acid-based antisense oligomer targeting hepatitis C virus internal ribosome entry site. Antimicrob. Agents Chemother.55(7), 3105–3114 (2011).
  • Sardh E , HarperP , BalwaniMet al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria. N. Engl. J. Med.380(6), 549–558 (2019).
  • Solomon SD , AdamsD , KristenAet al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation139(4), 431–443 (2019).
  • Adams D , Gonzalez-DuarteA , O’RiordanWDet al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med.379(1), 11–21 (2018).
  • Adams D , SuhrOB , DyckPJet al. Trial design and rationale for APOLLO, a Phase III, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC Neurol.17(1), 181-017-0948-5 (2017).
  • Suhr OB , CoelhoT , BuadesJet al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a Phase II multi-dose study. Orphanet J. Rare Dis.10, 109-015-0326-6 (2015).
  • Benson MD . Inotersen treatment for ATTR amyloidosis. Amyloid26(Suppl. 1), 27–28 (2019).
  • Finkel RS , ChiribogaCA , VajsarJet al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a Phase II, open-label, dose-escalation study. Lancet388(10063), 3017–3026 (2016).
  • Chiriboga CA , SwobodaKJ , DarrasBTet al. Results from a Phase I study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology86(10), 890–897 (2016).
  • Alfano LN , CharlestonJS , ConnollyAMet al. Long-term treatment with eteplirsen in nonambulatory patients with Duchenne muscular dystrophy. Medicine (Baltimore)98(26), e15858 (2019).
  • Mendell JR , Rodino-KlapacLR , SahenkZet al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann. Neurol.74(5), 637–647 (2013).
  • Kernan NA , GruppS , SmithARet al. Final results from a defibrotide treatment-IND study for patients with hepatic veno-occlusive disease/sinusoidal obstruction syndrome. Br. J. Haematol.181(6), 816–827 (2018).
  • Kernan NA , RichardsonPG , SmithARet al. Defibrotide for the treatment of hepatic veno-occlusive disease/sinusoidal obstruction syndrome following nontransplant-associated chemotherapy: final results from a post hoc analysis of data from an expanded-access program. Pediatr. Blood Cancer.65(10), e27269 (2018).
  • Richardson PG , RichesML , KernanNAet al. Phase III trial of defibrotide for the treatment of severe veno-occlusive disease and multi-organ failure. Blood127(13), 1656–1665 (2016).
  • Duell PB , SantosRD , KirwanBA , WitztumJL , TsimikasS , KasteleinJJP. Long-term mipomersen treatment is associated with a reduction in cardiovascular events in patients with familial hypercholesterolemia. J. Clin. Lipidol.10(4), 1011–1021 (2016).
  • Raal FJ , BraamskampMJ , SelveySL , SensingerCH , KasteleinJJ. Pediatric experience with mipomersen as adjunctive therapy for homozygous familial hypercholesterolemia. J. Clin. Lipidol.10(4), 860–869 (2016).
  • Boyer DS , GoldbaumM , LeysAM , StaritaC. V.I.S.I.O.N. Study Group. Effect of pegaptanib sodium 0.3 mg intravitreal injections (Macugen) in intraocular pressure: posthoc analysis from V.I.S.I.O.N. study. Br. J. Ophthalmol.98(11), 1543–1546 (2014).
  • Rinaldi M , ChiosiF , Dell’OmoRet al. Intravitreal pegaptanib sodium (Macugen) for treatment of myopic choroidal neovascularization: a morphologic and functional study. Retina33(2), 397–402 (2013).
  • Setten RL , RossiJJ , HanSP. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov.18(6), 421–446 (2019).
  • Presloid JB , NovellaIS. RNA viruses and RNAi: quasispecies implications for viral escape. Viruses7(6), 3226–3240 (2015).
  • Khvorova A , WattsJK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol.35(3), 238–248 (2017).
  • Iwamoto N , ButlerDCD , SvrzikapaNet al. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nat. Biotechnol.35(9), 845–851 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.