173
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Epigenetic Targeting of Waldenström Macroglobulinemia Cells with Bet Inhibitors Synergizes with BCl2 or Histone Deacetylase Inhibition

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 129-144 | Received 09 May 2020, Accepted 19 Nov 2020, Published online: 24 Dec 2020

References

  • Kapoor P , PaludoJ , VallumsetlaN , GreippPR. Waldenström macroglobulinemia: what a hematologist needs to know. Blood Rev.29(5), 301–319 (2015).
  • Ansell SM , KyleRA , ReederCBet al. Diagnosis and management of Waldenström macroglobulinemia: mayo stratification of macroglobulinemia and risk-adapted therapy (mSMART) guidelines. Mayo Clin. Proc.85(9), 824–833 (2010).
  • Treon SP , GustineJ , MeidKet al. Ibrutinib monotherapy in symptomatic, treatment-naïve patients with Waldenström macroglobulinemia. J. Clin. Oncol.36(27), 2755–2761 (2018).
  • Han W , MatissekSJ , JacksonDA , SklavanitisB , ElsawaSF. Targeting IL-6 receptor reduces IgM levels and tumor growth in Waldenström macroglobulinemia. Oncotarget10(36), 3400–3407 (2019).
  • Sun JY , XuL , TsengHet al. Histone deacetylase inhibitors demonstrate significant preclinical activity as single agents, and in combination with bortezomib in Waldenström’s macroglobulinemia. Clin. Lymphoma Myeloma Leuk.11, 152-156 (2011).
  • De Weerdt I , KoopmansSM , KaterAP , Van GelderM. Incidence and management of toxicity associated with ibrutinib and idelalisib: a practical approach. Haematologica102(10), 1629–1639 (2017).
  • Tate CR , RhodesLV , SegarHCet al. Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res.14(3), 1–15 (2012).
  • Dawson MA , KouzaridesT , HuntlyBJP. Targeting epigenetic readers in cancer. N. Engl. J. Med.367(7), 647–657 (2012).
  • Shi J , VakocCR. The Mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol. Cell54(5), 728–736 (2014).
  • Liu S , LiF , PanLet al. BRD4 inhibitor and histone deacetylase inhibitor synergistically inhibit the proliferation of gallbladder cancer in vitro and in vivo. Cancer Sci.110(8), 2493–2506 (2019).
  • Kim SR , LewisJM , CyrenneBMet al. BET inhibition in advanced cutaneous T cell lymphoma is synergistically potentiated by BCL2 inhibition or HDAC inhibition. Oncotarget9(49), 29193–29207 (2018).
  • Nicodeme E , JeffreyKL , SchaeferUet al. Suppression of inflammation by a synthetic histone mimic. Nature468(7327), 1119–1123 (2010).
  • Filippakopoulos P , QiJ , PicaudSet al. Selective inhibition of BET bromodomains. Nature468(7327), 1067–1073 (2010).
  • Puissant A , FrummSM , AlexeGet al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov.3(3), 309–323 (2013).
  • Cheng Z , GongY , MaYet al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin. Cancer Res.19(7), 1748–1759 (2013).
  • Asangani IA , DommetiVL , WangXet al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature510(7504), 278–282 (2014).
  • Trabucco SE , GersteinRM , EvensAMet al. Inhibition of bromodomain proteins for the treatment of human diffuse large B-cell lymphoma. Clin. Cancer Res.21(1), 113–122 (2015).
  • Li W , GuptaSK , HanWet al. Targeting MYC activity in double-hit lymphoma with MYC and BCL2 and/or BCL6 rearrangements with epigenetic bromodomain inhibitors. J. Hematol. Oncol.12(1), 1–13 (2019).
  • Ditzel Santos D , HoAW , TournilhacOet al. Establishment of BCWM.1 cell line for Waldenström’s macroglobulinemia with productive in vivo engraftment in SCID-hu mice. Exp. Hematol.35(9), 1366–1375 (2007).
  • Hodge LS , NovakAJ , GroteDMet al. Establishment and characterization of a novel Waldenström macroglobulinemia cell line, MWCL-1. Blood117(19), 190–197 (2011).
  • Chitta KS , PaulusA , AilawadhiSet al. Development and characterization of a novel human Waldenström macroglobulinemia cell line: RPCI-WM1, Roswell Park Cancer Institute- Waldenström Macroglobulinemia 1. Leuk. Lymphoma54(2), 387–396 (2013).
  • Han W , JacksonDA , MatissekSJet al. Novel molecular mechanism of regulation of CD40 ligand by the transcription factor GLI2. J. Immunol.198(11), 4481–4489 (2017).
  • Jackson DA , SmithTD , AmarsaikhanNet al. Modulation of the IL-6 receptor α underlies GLI2-mediated regulation of Ig secretion in Waldenström macroglobulinemia cells. J. Immunol.195(6), 2908–2916 (2015).
  • Han W , IbarraG , GuptaM , YinY , ElsawaSF. Elevated GLI3 expression in germinal center diffuse large B cell lymphoma. Leuk. Lymphoma59(11), 2743–2745 (2018).
  • Duvvuru MK , HanW , ChowdhuryPR , VahabzadehS , SciammarellaF , ElsawaSF. Bone marrow stromal cells interaction with titanium; Effects of composition and surface modification. PLoS ONE14(5), e0216087 (2019).
  • Elsawa SF , NovakAJ , ZiesmerSCet al. Comprehensive analysis of tumor microenvironment cytokines in Waldenstrom macroglobulinemia identifies CCL5 as a novel modulator of IL-6 activity. Blood118(20), 5540–5549 (2011).
  • Treon SP , XuL , YangGet al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N. Engl. J. Med.367(9), 826–833 (2012).
  • Xu L , HunterZR , YangGet al. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood121(11), 2051–2058 (2013).
  • Elsawa SF , AlmadaLL , ZiesmerSCet al. GLI2 transcription factor mediates cytokine cross-talk in the tumor microenvironment. J. Biol. Chem.286(24), 21524–21534 (2011).
  • Leleu X , JiaX , RunnelsJet al. The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood110(13), 4417–4426 (2007).
  • Jalali S , AnsellSM. Bone marrow microenvironment in Waldenstrom’s macroglobulinemia. Best Pract. Res. Clin. Haematol.29(2), 148–155 (2016).
  • Roccaro AM , SaccoA , HusuENet al. Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia. Blood115(3), 559–569 (2010).
  • Agarwal A , GhobrialIM. The bone marrow microenvironment in Waldenström macroglobulinemia. Clin. Lymphoma Myeloma Leuk.13(2), 218–221 (2013).
  • Dimopoulos MA , GalaniE , MatsoukaC. Waldenstrom’s macroglobulinemia. Hematol. Oncol. Clin. North Am.13(6), 1351–1366 (1999).
  • Byrd JC , FurmanRR , CoutreSEet al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med.369(1), 32–42 (2013).
  • Wang ML , RuleS , MartinPet al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med.369(6), 507–516 (2013).
  • Treon SP , TripsasCK , MeidKet al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N. Engl. J. Med.372(15), 1430–1440 (2015).
  • Dawson MA , PrinjhaRK , DittmannAet al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature478(7370), 529–533 (2011).
  • Ott CJ , KoppN , BirdLet al. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood120(14), 2843–2852 (2012).
  • Delmore JE , IssaGC , LemieuxMEet al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell146(6), 904–917 (2011).
  • Nguyen L , PapenhausenP , ShaoH. The role of c-MYC in B-cell lymphomas: diagnostic and molecular aspects. Genes (Basel)8(4), 2–22 (2017).
  • Escot C , TheilletC , LidereauRet al. Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc. Natl Acad. Sci. USA83(13), 4834–4838 (1986).
  • Jenkins RB , QianJ , LieberMM , BostwickDG. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res.57(3), 524–531 (1997).
  • Erisman MD , RothbergPG , DiehlRE , MorseCC , SpandorferJM , AstrinSM. Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene. Mol. Cell. Biol.5(8), 1969–1976 (1985).
  • Miller DM , ThomasSD , IslamA , MuenchD , SedorisK. c-Myc and cancer metabolism. Clin. Cancer Res.18(20), 5546–5553 (2012).
  • Matthews GM , GandolfiS , BruggentheisJet al. BET bromodomain degradation as a therapeutic strategy in multiple myeloma. Blood128(22), 1062–1062 (2016).
  • Cao Y , HunterZR , LiuXet al. CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88L265P-directed survival signalling in Waldenström macroglobulinaemia cells. Br. J. Haematol.168(5), 701–707 (2015).
  • Davids MS , SeymourJF , GerecitanoJFet al. Phase I study of ABT-199 (GDC-0199) in patients with relapsed/refractory non-hodgkin lymphoma: responses observed in diffuse large B-cell (DLBCL) and follicular lymphoma (FL) at higher cohort doses. Clin. Adv. Hematol. Oncol.12(8), 18–19 (2014).
  • Carrà G , NicoliP , LinguaMFet al. Inhibition of bromodomain and extra-terminal proteins increases sensitivity to venetoclax in chronic lymphocytic leukaemia. J. Cell. Mol. Med.24(2), 1650–1657 (2020).
  • Shim JM , LeeJS , RussellKEet al. BET proteins are a key component of immunoglobulin gene expression. Epigenomics9(4), 393–406 (2017).
  • Burger JA , GhiaP , RosenwaldA , Caligaris-CappioF. The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood114(16), 3367–3375 (2009).
  • Eliopoulos N , ZhaoJ , BouchentoufMet al. Human marrow-derived mesenchymal stromal cells decrease cisplatin renotoxicity in vitro and in vivo and enhance survival of mice post-intraperitoneal injection. Am. J. Physiol. Renal Physiol.299(6), F1288-F1298 (2010).
  • Lis R , TouboulC , MirshahiPet al. Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12. Int. J. Cancer128(3), 715–725 (2011).
  • Secchiero P , ZorzetS , TripodoCet al. Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin’s lymphoma xenografts. PLoS ONE5(6), e11140 (2010).
  • Trédan O , GalmariniCM , PatelK , TannockIF. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst.99(19), 1441–1454 (2007).
  • Villanueva J , HerlynM. Melanoma and the tumor microenvironment. Curr. Oncol. Rep.10(5), 439–446 (2008).
  • Yañez R , OviedoA , AldeaM , BuerenJA , LamanaML. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp. Cell Res.316(19), 3109–3123 (2010).
  • Elsawa S , AnsellS. Cytokines in the microenvironment of Waldenström’s macroglobulinemia. Clin. Lymphoma Myeloma.9(1), 43–45 (2009).
  • Han W , JacksonDA , MatissekSJet al. Novel molecular mechanism of regulation of CD40 ligand by the transcription factor GLI2. J. Immunol.198(11), 4481–4489 (2017).
  • Taverna SD , LiH , RuthenburgAJ , AllisCD , PatelDJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol.14(11), 1025–1040 (2007).
  • Shahbazi J , LiuPY , AtmadibrataBet al. The bromodomain inhibitor jq1 and the histone deacetylase inhibitor panobinostat synergistically reduce n-myc expression and induce anticancer effects. Clin. Cancer Res.22(10), 2534–2544 (2016).
  • Fiskus W , SharmaS , QiJet al. Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells. Mol. Cancer Ther.13(5), 1142–1154 (2014).
  • Sun B , ShahB , FiskusWet al. Synergistic activity of BET protein antagonist-based combinations in mantle cell lymphoma cells sensitive or resistant to ibrutinib. Blood126(13), 1565–1574 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.