132
Views
0
CrossRef citations to date
0
Altmetric
Review

Genetic Variability in Noncoding RNAs: Involvement of miRNAs and Long Noncoding RNAs in Osteoporosis Pathogenesis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2035-2049 | Received 01 Jun 2020, Accepted 02 Oct 2020, Published online: 02 Dec 2020

References

  • Dunham I , KundajeA , AldredSFet al. An integrated encyclopedia of DNA elements in the human genome. Nature489(7414), 57–74 (2012).
  • Djebali S , DavisCA , MerkelAet al. Landscape of transcription in human cells. Nature489(7414), 101–108 (2012).
  • Richard Boland C . Non-coding RNA: it’s not junk. Dig. Dis. Sci.62(5), 1107–1109 (2017).
  • Huynh NPT , AndersonBA , GuilakF , McAlindenA. Emerging roles for long noncoding RNAs in skeletal biology and disease. Connect. Tissue Res.58(1), 116–141 (2017).
  • Silva AM , MouraSR , TeixeiraJH , BarbosaMA , SantosSG , AlmeidaMI. Long noncoding RNAs: a missing link in osteoporosis. Bone Res.7, 10 (2019).
  • Marini F , CianferottiL , BrandiML. Epigenetic mechanisms in bone biology and osteoporosis: can they drive therapeutic choices?Int. J. Mol. Sci.17(8), 1329 (2016).
  • Tarantino U , IolasconG , CianferottiLet al. Clinical guidelines for the prevention and treatment of osteoporosis: summary statements and recommendations from the Italian Society for Orthopaedics and Traumatology. J. Orthop. Traumatol.18, 3–36 (2017).
  • Leali PT , MuresuF , MelisA , RuggiuA , ZachosA , DoriaC. Skeletal fragility definition. Clin. Cases Miner. Bone Metab.8(2), 11–13 (2011).
  • Al Anouti F , TahaZ , ShamimS , KhalafK , AlKaabi L , AlsafarH. An insight into the paradigms of osteoporosis: from genetics to biomechanics. Bone Reports11, 100216 (2019).
  • Rocha-Braz MGM , Ferraz-de-SouzaB. Genetics of osteoporosis: searching for candidate genes for bone fragility. Arch. Endocrinol. Metab.60(4), 391–401 (2016).
  • Kim SK . Identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. PLoS ONE13(7), e0200785 (2018).
  • Morris JA , KempJP , YoultenSEet al. An atlas of genetic influences on osteoporosis in humans and mice. Nat. Genet.51(2), 258–266 (2019).
  • Qin L , LiuY , WangYet al. Computational characterization of osteoporosis associated SNPs and genes identified by genome-wide association studies. PLoS ONE11(3), e0150070 (2016).
  • Sabik OL , FarberCR. Using GWAS to identify novel therapeutic targets for osteoporosis. Transl. Res.181, 15–26 (2017).
  • Al-Barghouthi BM , FarberCR. Dissecting the genetics of osteoporosis using systems approaches. Trends Genet.35(1), 55–67 (2019).
  • Hrdlickova B , de AlmeidaRC , BorekZ , WithoffS. Genetic variation in the non-coding genome: Involvement of micro-RNAs and long non-coding RNAs in disease. Biochim. Biophys. Acta Mol. Basis Dis.1842(10), 1910–1922 (2014).
  • Ma L , BajicVB , ZhangZ. On the classification of long non-coding RNAs. RNA Biol.10(6), 924–933 (2013).
  • Cheng VK-F , AuPC-M , TanKC , CheungC-L. MicroRNA and human bone health. JBMR Plus3(1), 2–13 (2019).
  • Kim B , JeongK , KimVN. Genome-wide mapping of DROSHA cleavage sites on primary microRNAs and noncanonical substrates. Mol. Cell.66(2), 258–269; e5 (2017).
  • O’Brien J , HayderH , ZayedY , PengC. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne).9, 402 (2018).
  • Mandourah AY , RanganathL , BarracloughRet al. Circulating microRNAs as potential diagnostic biomarkers for osteoporosis. Sci. Rep.8(1), 8421 (2018).
  • Bellavia D , DeLuca A , CarinaVet al. Deregulated miRNAs in bone health: epigenetic roles in osteoporosis. Bone122, 52–75 (2019).
  • Yao Z-yu , ChenW-bin , ShaoS-shanet al. Role of exosome-associated microRNA in diagnostic and therapeutic applications to metabolic disorders. J. Zhejiang Univ. Sci. B19(3), 183–198 (2018).
  • Kamal NNSBNM , ShahidanWNS. Non-exosomal and exosomal circulatory MicroRNAs: which are more valid as biomarkers?Front. Pharmacol.10, 1500 (2020).
  • Hu H , HeX , ZhangYet al. MicroRNA alterations for diagnosis, prognosis, and treatment of osteoporosis: a comprehensive review and computational functional survey. Front. Genet.11, 181 (2020).
  • Feichtinger X , MuschitzC , HeimelPet al. Bone-related Circulating MicroRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their association to bone microstructure and histomorphometry. Sci. Rep.8(1), 4867 (2018).
  • Kocijan R , MuschitzC , GeigerEet al. Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J. Clin. Endocrinol. Metab.101(11), 4125–4134 (2016).
  • Yavropoulou MP , AnastasilakisAD , MakrasP , TsalikakisDG , GrammatikiM , YovosJG. Expression of microRNAs that regulate bone turnover in the serum of postmenopausal women with low bone mass and vertebral fractures. Eur. J. Endocrinol.176(2), 169–176 (2017).
  • Seeliger C , KarpinskiK , HaugATet al. Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J. Bone Miner. Res.29(8), 1718–1728 (2014).
  • Pala E , DenkçekenT. Differentially expressed circulating miRNAs in postmenopausal osteoporosis: ameta-analysis. Biosci. Rep.39(5), BSR20190667 (2019).
  • Bhat SA , AhmadSM , MumtazPTet al. Long non-coding RNAs: Mechanism of action and functional utility. Non-Coding RNA Res.1(1), 43–50 (2016).
  • Sana J , FaltejskovaP , SvobodaM , SlabyO. Novel classes of non-coding RNAs and cancer. J. Transl. Med.10(1), 103 (2012).
  • Zhang X , WangW , ZhuWet al. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int. J. Mol. Sci.20(22), 5573 (2019).
  • Li Z , ZhaoW , WangM , ZhouX. The role of long noncoding RNAs in gene expression regulation. In: Gene Expression Profiling in Cancer.VlachakisD (Ed.). IntechOpen, (2019).
  • Fernandes JCR , AcuñaSM , AokiJI , Floeter-WinterLM , MuxelSM. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Non-coding RNA5(1), 17 (2019).
  • Zhou Y , XuC , ZhuWet al. Long noncoding RNA analyses for osteoporosis risk in Caucasian women. Calcif. Tissue Int.105(2), 183–192 (2019).
  • Wu QY , LiX , MiaoZNet al. Long non-coding RNAs: a new regulatory code for osteoporosis. Front. Endocrinol. (Lausanne).9, 587 (2018).
  • Tang Z , GongZ , SunX. LncRNA DANCR involved osteolysis after total hip arthroplasty by regulating FOXO1 expression to inhibit osteoblast differentiation. J. Biomed. Sci.25(1), 4 (2018).
  • Centofanti F , SantoroM , MariniMet al. Identification of aberrantly-expressed long non-coding RNAs in osteoblastic cells from osteoporotic patients. Biomedicines.8(3), 13 (2020).
  • Peng S , CaoL , HeSet al. An overview of long noncoding RNAs involved in bone regeneration from mesenchymal stem cells. Stem Cells Int.2018, 8273648 (2018).
  • Chen X , YangL , GeDet al. Long non-coding RNA XIST promotes osteoporosis through inhibiting bone marrow mesenchymal stem cell differentiation. Exp. Ther. Med.17(1), 803 (2018).
  • Han Y , LiuC , LeiMet al. LncRNA TUG1 was upregulated in osteoporosis and regulates the proliferation and apoptosis of osteoclasts. J. Orthop. Surg. Res.14(1), 416 (2019).
  • Fei Q , BaiX , LinJ , MengH , YangY , GuoA. Identification of aberrantly expressed long non-coding RNAs in postmenopausal osteoporosis. Int. J. Mol. Med.41(6), 3537–3550 (2018).
  • Tong X , GuPC , XuSZ , LinXJ. Long non-coding RNA-DANCR in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. Biosci. Biotechnol. Biochem.79(5), 732–737 (2015).
  • Huang S , ZhuX , XiaoDet al. LncRNA SNHG1 was down-regulated after menopause and participates in postmenopausal osteoporosis. Biosci. Rep.39(11), BSR20190445 (2019).
  • Yu H , ZhouW , YanW , XuZ , XieY , ZhangP. LncRNA CASC11 is upregulated in postmenopausal osteoporosis and is correlated with TNF-α. Clin. Interv. Aging.14, 1663–1669 (2019).
  • Taipaleenmäki H . Regulation of bone metabolism by microRNAs. Curr. Osteoporos. Rep.16(1), 1–12 (2018).
  • Dole NS , DelanyAM. MicroRNA variants as genetic determinants of bone mass. Bone84, 57–68 (2016).
  • Króliczewski J , SobolewskaA , LejnowskiD , CollawnJF , BartoszewskiR. microRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene640, 66–72 (2018).
  • Hrovatin K , KunejT. Classification of miRNA-related sequence variations. Epigenomics10(4), 463–481 (2018).
  • Gong J , TongY , ZhangHMet al. Genome-wide identification of SNPs in MicroRNA genes and the SNP effects on MicroRNA target binding and biogenesis. Hum. Mutat.33(1), 254–263 (2012).
  • Jia F , SunR , LiJ , LiQ , ChenG , FuW. Interactions of pri-miRNA-34b/c and TP53 polymorphisms on the risk of osteoporosis. Genet. Test. Mol. Biomarkers.20(7), 398–401 (2016).
  • Luo X , YangW , YeDQet al. A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet.7(6), e1002128 (2011).
  • Xu Y , LiuL , LiuJet al. A potentially functional polymorphism in the promoter region of miR-34b/c is associated with an increased risk for primary hepatocellular carcinoma. Int. J. Cancer128(2), 412–417 (2011).
  • Davis BN , HataA. Regulation of microRNA Biogenesis: a miRiad of mechanisms. Cell Commun. Signal.7, 18 (2009).
  • Fernandez N , CordinerRA , YoungRS , HugN , MacIasS , CáceresJF. Genetic variation and RNA structure regulate microRNA biogenesis. Nat. Commun.8(1), 1–12 (2017).
  • Starega-Roslan J , WitkosTM , Galka-MarciniakP , KrzyzosiakWJ. Sequence features of Drosha and Dicer cleavage sites affect the complexity of IsomiRs. Int. J. Mol. Sci.16(4), 8110–8127 (2015).
  • Jazdzewski K , MurrayEL , FranssilaK , JarzabB , SchoenbergDR , DeLa Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA105(20), 7269–7274 (2008).
  • Sun G , YanJ , NoltnerKet al. SNPs in human miRNA genes affect biogenesis and function. RNA15(9), 1640–1651 (2009).
  • Karabegović I , MaasS , Medina-GomezCet al. Genetic polymorphism of miR-196a-2 is associated with bone mineral density (BMD). Int. J. Mol. Sci.18(12), 2529 (2017).
  • De-Ugarte L , Caro-MolinaE , Rodríguez-SanzMet al. SNPs in bone-related miRNAs are associated with the osteoporotic phenotype. Sci. Rep.7(1), 516 (2017).
  • Ahn TK , KimJO , KumarHet al. Polymorphisms of miR-146a, miR-149, miR-196a2, and miR-499 are associated with osteoporotic vertebral compression fractures in Korean postmenopausal women. J. Orthop. Res.36(1), 244–253 (2018).
  • Styrkarsdottir U , StefanssonOA , GunnarsdottirKet al. GWAS of bone size yields twelve loci that also affect height, BMD, osteoarthritis or fractures. Nat. Commun.10(1), 2054 (2019).
  • Kuang W , ZhengL , XuXet al. Dysregulation of the miR-146a-Smad4 axis impairs osteogenesis of bone mesenchymal stem cells under inflammation. Bone Res.5, 17037 (2017).
  • Xie Q , WeiW , RuanJet al. Effects of miR-146a on the osteogenesis of adipose-derived mesenchymal stem cells and bone regeneration. Sci. Rep.7, 42840 (2017).
  • Zou L , ZhangG , LiuL , ChenC , CaoX , CaiJ. A MicroRNA-124 polymorphism is associated with fracture healing via modulating BMP6 expression. Cell. Physiol. Biochem.41(6), 2161–2170 (2017).
  • Hou Q , RuanH , GilbertJet al. MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity. Nat. Commun.7, 42840 (2015).
  • Wei J , ShiY , ZhengLet al. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J. Cell Biol.197(4), 509–521 (2012).
  • Bae Y , YangT , ZengH-Cet al. miRNA-34c regulates Notch signaling during bone development. Hum. Mol. Genet.21(13), 2991–3000 (2012).
  • Bhartiya D , ScariaV. Genomic variations in non-coding RNAs: structure, function and regulation. Genomics107(2–3), 59–68 (2016).
  • Giral H , LandmesserU , KratzerA. Into the wild: GWAS exploration of non-coding RNAs. Front. Cardiovasc. Med.5, 181 (2018).
  • Chen XF , ZhuDL , YangMet al. An osteoporosis risk SNP at 1p36.12 acts as an allele-specific enhancer to modulate LINC00339 expression via long-range loop formation. Am. J. Hum. Genet.102(5), 776–793 (2018).
  • Zeng Q , WuKH , LiuKet al. Genome-wide association study of lncRNA polymorphisms with bone mineral density. Ann. Hum. Genet.82(5), 244–253 (2018).
  • Mei B , WangY , YeWet al. LncRNA ZBTB40-IT1 modulated by osteoporosis GWAS risk SNPs suppresses osteogenesis. Hum. Genet.138(2), 151–166 (2019).
  • Maruyama K , UematsuS , KondoTet al. Strawberry notch homologue 2 regulates osteoclast fusion by enhancing the expression of DC-STAMP. J. Exp. Med.210(10), 1947–1960 (2013).
  • Yamamura S , Imai-SumidaM , TanakaY , DahiyaR. Interaction and cross-talk between non-coding RNAs. Cell. Mol. Life Sci.75(3), 467–484 (2018).
  • Salmena L , PolisenoL , TayY , KatsL , PandolfiPP. A ceRNA hypothesis: the rosetta stone of a hidden RNA language?Cell146(3), 353–358 (2011).
  • Gao Y , XiaoF , WangCet al. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells. J. Cell. Biochem.119(8), 6986–6996 (2018).
  • Wang C-G , LiaoZ , XiaoHet al. LncRNA KCNQ1OT1 promoted BMP2 expression to regulate osteogenic differentiation by sponging miRNA-214. Exp. Mol. Pathol.107, 77–84 (2019).
  • Zhang Y , ChenB , LiD , ZhouX , ChenZ. LncRNA NEAT1/miR-29b-3p/BMP1 axis promotes osteogenic differentiation in human bone marrow-derived mesenchymal stem cells. Pathol. Res. Pract.215(3), 525–531 (2019).
  • Liang WC , FuWM , WangYBet al. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci. Rep.6, 20121 (2016).
  • Wu Y , JiangY , LiuQ , LiuC-Z. lncRNA H19 promotes matrix mineralization through up-regulating IGF1 by sponging miR-185-5p in osteoblasts. BMC Mol. cell Biol.20(1), 48 (2019).
  • Yoon J-H , AbdelmohsenK , GorospeM. Functional interactions among microRNAs and long noncoding RNAs. Semin. Cell Dev. Biol.34, 9–14 (2014).
  • Miao Y-R , LiuW , ZhangQ , GuoA-Y. lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res.46(D1), D276–D280 (2018).
  • Chen X , GuS , ChenB-Fet al. Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials53, 239–50 (2015).
  • Qi XB , JiaB , WangWet al. Role of miR-199a-5p in osteoblast differentiation by targeting TET2. Gene726, 144193 (2020).
  • Lukasik A , WójcikowskiM , ZielenkiewiczP. Tools4miRs - one place to gather all the tools for miRNA analysis. Bioinformatics32(17), 2722–2724 (2016).
  • Yue M , ZhouD , ZhiHet al. MSDD: a manually curated database of experimentally supported associations among miRNAs, SNPs and human diseases. Nucleic Acids Res.46(D1), D181–D185 (2018).
  • Bruno AE , LiL , KalabusJL , PanY , YuA , HuZ. miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes. BMC Genomics13(1), 44 (2012).
  • Bhattacharya A , ZiebarthJD , CuiY. PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res.42(Database issue), D86–D91 (2014).
  • Liu C , ZhangF , LiTet al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics13(1), 661 (2012).
  • Gong J , LiuC , LiuWet al. An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools. Database (Oxford)2015, bav029 (2015).
  • Chen X , HaoY , CuiYet al. LncVar: a database of genetic variation associated with long non-coding genes. Bioinformatics33(1), 112–118 (2017).
  • Ning S , ZhaoZ , YeJet al. SNP@lincTFBS: an integrated database of polymorphisms in human lincRNA transcription factor binding sites. PLoS ONE9(7), e103851 (2014).
  • Ning S , YueM , WangPet al. LincSNP 2.0: an updated database for linking disease-associated SNPs to human long non-coding RNAs and their TFBSs. Nucleic Acids Res.45(D1), D74–D78 (2017).
  • Guo L , DuY , QuS , WangJ. rVarBase: an updated database for regulatory features of human variants. Nucleic Acids Res.44(D1), D888–893 (2016).
  • Yuan J , TicknerJ , MullinBHet al. Advanced genetic approaches in discovery and characterization of genes involved with osteoporosis in mouse and human. Front. Genet.10(APR), (2019).
  • Hellwege JN , KeatonJM , GiriA , GaoX , Velez EdwardsDR , EdwardsTL. Population stratification in genetic association studies. Curr. Protoc. Hum. Genet.95(1), 1.22.1–1.22.23 (2017).
  • Marozik P , AleknaV , RudenkoEet al. Bone metabolism genes variation and response to bisphosphonate treatment in women with postmenopausal osteoporosis. PLoS One14(8), e0221511 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.