211
Views
0
CrossRef citations to date
0
Altmetric
Research Article

DNA Methylation Analysis of Candidate Genes Associated with Dementia in Peripheral Blood

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , & ORCID Icon show all
Pages 2109-2123 | Received 03 Jun 2020, Accepted 23 Sep 2020, Published online: 10 Dec 2020

References

  • Fenoglio C , ScarpiniE , SerpenteM , GalimbertiD. Role of genetics and epigenetics in the pathogenesis of Alzheimer’s disease and frontotemporal dementia. J. Alzheimers Dis.62(3), 913–932 (2018).
  • Yamazaki Y , ZhaoN , CaulfieldTR , LiuC-C , BuG. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol.15(9), 501–518 (2019).
  • Liu CC , LiuCC , KanekiyoT , XuH , BuG. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol.9(2), 106–118 (2013).
  • Van der kant R , GoldsteinLawrence SB. Cellular functions of the amyloid precursor protein from development to dementia. Dev. Cell32(4), 502–515 (2015).
  • Ferencz B , LaukkaEJ , LövdénMet al. The influence of APOE and TOMM40 polymorphisms on hippocampal volume and episodic memory in old age. Front. Hum. Neurosci.7, 198–198 (2013).
  • Lyall DM , HarrisSE , BastinMEet al. Alzheimer’s disease susceptibility genes APOE and TOMM40 and brain white matter integrity in the Lothian Birth Cohort 1936. Neurobiol. Aging35(6), 1513.e1525–1513.e1511.1513E1533 (2014).
  • Prendecki M , Florczak-WyspianskaJ , KowalskaMet al. Biothiols and oxidative stress markers and polymorphisms of TOMM40 and APOC1 genes in Alzheimer’s disease patients. Oncotarget9(81), 35207–35225 (2018).
  • Driver JA , LuKP. Pin1: a new genetic link between Alzheimer’s disease, cancer and aging. Curr. Aging Sci.3(3), 158–165 (2010).
  • Park JS , LeeJ , JungESet al. Brain somatic mutations observed in Alzheimer’s disease associated with aging and dysregulation of tau phosphorylation. Nat. Commun.10(1), 3090 (2019).
  • Villar-Pique A , LopesDa Fonseca T , OuteiroTF. Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. J. Neurochem.139(Suppl. 1), 240–255 (2016).
  • Linnertz C , LutzMW , ErvinJFet al. The genetic contributions of SNCA and LRRK2 genes to lewy body pathology in Alzheimer’s disease. Hum. Mol. Genet.23(18), 4814–4821 (2014).
  • Borroni B , GrassiM , ArchettiSet al. BDNF genetic variations increase the risk of Alzheimer’s disease-related depression. J. Alzheimers Dis.18(4), 867–875 (2009).
  • Ng TKS , HoCSH , TamWWS , KuaEH , HoRC-M. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): a systematic review and meta-analysis. Int. J. Mol. Sci.20(2), 257 (2019).
  • Liu J , ZhaoW , WareEB , TurnerST , MosleyTH , SmithJA. DNA methylation in the APOE genomic region is associated with cognitive function in African Americans. BMC Med. Genomics11, 1–13 (2018).
  • Shao Y , ShawM , ToddKet al. DNA methylation of TOMM40-APOE-APOC2 in Alzheimer’s disease. J. Hum. Genet.63(4), 459–471 (2018).
  • Karlsson IK , PlonerA , WangY , GatzM , PedersenNL , HäggS. Apolipoprotein E DNA methylation and late-life disease. Int. J. Epidemiol.47(3), 899–907 (2018).
  • Mancera-Paez O , Estrada-OrozcoK , MahechaMFet al. Differential methylation in APOE (Chr19; Exon four; from 44,909,188 to 44,909,373/hg38) and increased Apolipoprotein E plasma levels in subjects with mild cognitive impairment. Int. J. Mol. Sci.20(6), 1–13 (2019).
  • D’addario C , CandiaSB , ArosioBet al. Transcriptional and epigenetic phenomena in peripheral blood cells of monozygotic twins discordant for Alzheimer’s disease, a case report. J. Neurol. Sci.372, 211–216 (2017).
  • Hou Y , ChenH , HeQet al. Changes in methylation patterns of multiple genes from peripheral blood leucocytes of Alzheimer’s disease patients. Acta Neuropsychiatr.25(2), 66–76 (2013).
  • Chang L , WangY , JiHet al. Elevation of peripheral BDNF promoter methylation links to the risk of Alzheimer’s disease. PLoS ONE9(11), e110773 (2014).
  • Nagata T , KobayashiN , IshiiJet al. Association between DNA Methylation of the BDNF promoter region and clinical presentation in Alzheimer’s disease. Dement. Geriatr. Cogn. Dis. Extra5(1), 64–73 (2015).
  • Xie B , XuY , LiuZet al. Elevation of peripheral BDNF promoter methylation predicts conversion from Amnestic Mild Cognitive Impairment to Alzheimer’s disease: a 5-Year longitudinal study. J. Alzheimers Dis.56(1), 391–401 (2017).
  • Arosio B , BulbarelliA , BastiasCandia Set al. Pin1 contribution to Alzheimer’s disease: transcriptional and epigenetic mechanisms in patients with Late-Onset Alzheimer’s disease. Neurodegener. Dis.17, 207–211 (2012).
  • Ferri E , ArosioB , D’addarioCet al. Gene promoter methylation and expression of Pin1 differ between patients with frontotemporal dementia and Alzheimer’s disease. J. Neurol. Sci.362, 283–286 (2016).
  • Funahashi Y , YoshinoY , YamazakiKet al. DNA methylation changes at SNCA intron 1 in patients with dementia with Lewy bodies. Psychiatry Clin. Neurosci.71(1), 28–35 (2017).
  • Yoshino Y , MoriT , YoshidaTet al. Elevated mRNA expression and low methylation of SNCA in Japanese Alzheimer’s disease subjects. J. Alzheimers Dis.54(4), 1349–1357 (2016).
  • Mcneil JJ , WoodsRL , NelsonMRet al. Baseline characteristics of participants in the ASPREE (ASPirin in Reducing Events in the Elderly) study. J. Gerontol. A Biol. Sci. Med. Sci.72(11), 1586–1593 (2017).
  • Ryan J , WoodsRL , BrittCet al. Normative performance of healthy older individuals on the Modified Mini-Mental State (3MS) examination according to ethno-racial group, gender, age and education level. Clin. Neuropsychol.33(4), 779–797 (2019).
  • Jones TG , SchinkaJA , VanderploegRD , SmallBJ , GravesAB , MortimerJA. 3MS normative data for the elderly. Arch. Clin. Neuropsychol.17(2), 171–177 (2002).
  • Smith A . Symbol digit modalities test: manual. Los Angeles: Western Psychological Services (1982).
  • Ruff RM , LightRH , ParkerSB , LevinHS. Benton controlled oral word association test: reliability and updated norms. Arch. Clin. Neuropsychol.11(4), 329–338 (1996).
  • Ryan J , WoodsRL , MurrayAMet al. Normative performance of older individuals on the Hopkins Verbal Learning Test-Revised (HVLT-R) according to ethno-racial group, gender, age and education level. Clin. Neuropsychol. doi: 10.1080/13854046.2020.1730444 1-17 (2020) ( Epub ahead of print).
  • Benedict RHB , SchretlenD , GroningerL , BrandtJ. Hopkins Verbal Learning Test – Revised: normative data and analysis of inter-form and test-retest reliability. Clin. Neuropsychol.12(1), 43–55 (1998).
  • First MB , FrancesA , PincusHA. DSM-IV-TR Handbook of Differential Diagnosis. American Psychiatric Publishing, Inc, Arlington, VA, USA (2002).
  • Ryan J , StoreyE , MurrayAMet al. Randomized placebo-controlled trial of the effects of aspirin on dementia and cognitive decline. Neurology95(3), e320–e331 (2020).
  • Fransquet PD , RyanJ. The current status of blood epigenetic biomarkers for dementia. Crit. Rev. Clin. Lab. Sci.56(7), 435–457 (2019).
  • Haeussler M , ZweigAS , TynerCet al. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res.47(D1), D853–d858 (2019).
  • Tusnády GE , SimonI , VáradiA , ArányiT. BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res.33(1), e9–e9 (2005).
  • Qiagen . DNeasy blood&tissue kits. (2019). www.qiagen.com/au/products/top-sellers/dneasy-blood-and-tissue-kit/#orderinginformation
  • Illumina Inc . “Illumina Infinium MethylationEPIC Array”. (2019). https://sapac.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html
  • Saffery R , GordonL. Time for a standardized system of reporting sites of genomic methylation. Genome Biol.16(1), 85 (2015).
  • Touleimat N , TostJ. Complete pipeline for Infinium((R)) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics4(3), 325–341 (2012).
  • Maksimovic J , PhipsonB , OshlackA. A cross-package Bioconductor workflow for analysing methylation array data. F1000Res5, 1281 (2016).
  • Houseman EA , AccomandoWP , KoestlerDCet al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics13(1), 86 (2012).
  • Salas L , KoestlerD. FlowSorted.Blood.EPIC: illumina EPIC data on immunomagnetic sorted peripheral adult blood cells. www.bioconductor.org/packages/release/data/experiment/html/FlowSorted.Blood.EPIC.html (2018).
  • Salas LA , KoestlerDC , ButlerRAet al. An optimized library for reference-based deconvolution of whole-blood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray. Genome Biol.19(1), 64 (2018).
  • Jaffe AE , IrizarryRA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol.15(2), R31 (2014).
  • Benjamini Y , HochbergY. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc.57(1), 289–300 (1995).
  • Dedeurwaerder S , DefranceM , BizetM , CalonneE , BontempiG , FuksF. A comprehensive overview of Infinium HumanMethylation450 data processing. Brief. Bioinform.15(6), 929–941 (2014).
  • Mise A , YoshinoY , YamazakiKet al. TOMM40 and APOE gene expression and cognitive decline in Japanese Alzheimer’s disease subjects. J. Alzheimers Dis.60(3), 1107–1117 (2017).
  • Pidsley R , ZotenkoE , PetersTJet al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol.17(1), 208–208 (2016).
  • Delaney C , GargSK , YungR. Analysis of DNA methylation by pyrosequencing. Methods Mol. Biol.1343, 249–264 (2015).
  • Wang H , LouD , WangZ. Crosstalk of genetic variants, allele-specific DNA methylation and environmental factors for complex disease risk. Front. Genet.9(695), 1–15 (2019).
  • Smith AK , KilaruV , KocakMet al. Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage and tissue type. BMC Genomics15(1), 145 (2014).
  • Bauer M . Cell-type-specific disturbance of DNA methylation pattern: a chance to get more benefit from and to minimize cohorts for epigenome-wide association studies. Int. J. Epidemiol.47(3), 917–927 (2018).
  • Lunnon K , IbrahimZ , ProitsiPet al. Mitochondrial dysfunction and immune activation are detectable in early Alzheimer’s disease blood. J. Alzheimers Dis.30, 685–710 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.