325
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Epigenetic Regulation of Immune Checkpoints and T Cell Exhaustion Markers in Tumor-Infiltrating T Cells of Colorectal Cancer Patients

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 1871-1882 | Received 25 Jun 2020, Accepted 17 Sep 2020, Published online: 10 Nov 2020

References

  • Bray F , FerlayJ , SoerjomataramI , SiegelRL , TorreLA , JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.68(6), 394–424 (2018).
  • Jung G , Hernandez-IllanE , MoreiraL , BalaguerF , GoelA. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol.17(2), 111–130 (2020).
  • Sasidharan Nair V , ToorSM , TahaRZ , ShaathH , ElkordE. DNA methylation and repressive histones in the promoters of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, PD-L1, and galectin-9 genes in human colorectal cancer. Clin. Epigenetics10(1), 104 (2018).
  • Ryser MD , YuM , GradyW , SiegmundK , ShibataD. Epigenetic heterogeneity in human colorectal tumors reveals preferential conservation and evidence of immune surveillance. Sci. Rep.8(1), 17292 (2018).
  • Wang T , MadenSK , LuebeckGEet al. Dysfunctional epigenetic aging of the normal colon and colorectal cancer risk. Clin. Epigenetics12(1), 5 (2020).
  • Saleh R , ElkordE. Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Lett.457, 168–179 (2019).
  • Saleh R , ElkordE. Acquired resistance to cancer immunotherapy: role of tumor-mediated immunosuppression. Semin. Cancer Biol.65, 13–27 (2020).
  • Pardoll DM . The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer12(4), 252–264 (2012).
  • Darvin P , ToorSM , SasidharanNair V , ElkordE. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp. Mol. Med.50(12), 1–11 (2018).
  • Toor SM , SasidharanNair V , DecockJ , ElkordE. Immune checkpoints in the tumor microenvironment. Semin. Cancer Biol.65, 1–12 (2020).
  • Seo H , ChenJ , Gonzalez-AvalosEet al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8(+) T-cell exhaustion. Proc. Natl Acad. Sci. USA116(25), 12410–12415 (2019).
  • Kim K , ParkS , ParkSYet al. Single-cell transcriptome analysis reveals TOX as a promoting factor for T-cell exhaustion and a predictor for anti-PD-1 responses in human cancer. Genome Med.12(1), 22 (2020).
  • Wang X , HeQ , ShenHet al. TOX promotes the exhaustion of antitumor CD8(+) T cells by preventing PD1 degradation in hepatocellular carcinoma. J. Hepatol.71(4), 731–741 (2019).
  • Khan O , GilesJR , McdonaldSet al. TOX transcriptionally and epigenetically programs CD8(+) T-cell exhaustion. Nature571(7764), 211–218 (2019).
  • Elashi AA , SasidharanNair V , TahaRZ , ShaathH , ElkordE. DNA methylation of immune checkpoints in the peripheral blood of breast and colorectal cancer patients. Oncoimmunology8(2), e1542918 (2019).
  • Sasidharan Nair V , ElSalhat H , TahaRZ , JohnA , AliBR , ElkordE. DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clin. Epigenetics10, 78 (2018).
  • Saleh R , TahaRZ , ToorSMet al. Expression of immune checkpoints and T-cell exhaustion markers in early and advanced stages of colorectal cancer. Cancer Immunol. Immunother.69(10), 1989–1999 (2020).
  • D’acquisto F , CromptonT. CD3+CD4−CD8− (double negative) T cells: saviours or villains of the immune response?Biochem. Pharmacol.82(4), 333–340 (2011).
  • Lu X , SuB , XiaHet al. Low double-negative CD3(+)CD4(−)CD8(−) T cells are associated with incomplete restoration of CD4(+) T cells and higher immune activation in HIV-1 immunological nonresponders. Front. Immunol.7, 579 (2016).
  • Bernardo I , ManceboE , AguiloIet al. Phenotypic and functional evaluation of CD3+CD4-CD8-T cells in human CD8 immunodeficiency. Haematologica96(8), 1195–1203 (2011).
  • Ngollo M , LebertA , DauresMet al. Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression. BMC Cancer17(1), 261 (2017).
  • Qin J , WenB , LiangY , YuW , LiH. Histone modifications and their role in colorectal cancer (review). Pathol. Oncol. Res.26(4), 2023–2033 (2020).
  • Aliahmad P , SeksenyanA , KayeJ. The many roles of TOX in the immune system. Curr. Opin. Immunol.24(2), 173–177 (2012).
  • Chaudhary B , ElkordE. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines (Basel)4(3), doi:10.3390/vaccines4030028 (2016).
  • Yasinska IM , SakhnevychSS , PavlovaLet al. The Tim-3-Galectin-9 pathway and its regulatory mechanisms in human breast cancer. Front. Immunol.10, 1594 (2019).
  • Sasidharan Nair V , ElkordE. Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells. Immunol. Cell Biol.96(1), 21–33 (2018).
  • Galon J , CostesA , Sanchez-CaboFet al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science313(5795), 1960–1964 (2006).
  • Crespo J , SunH , WellingTH , TianZ , ZouW. T-cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol.25(2), 214–221 (2013).
  • Pauken KE , WherryEJ. Overcoming T-cell exhaustion in infection and cancer. Trends Immunol.36(4), 265–276 (2015).
  • Blackburn SD , ShinH , HainingWNet al. Coregulation of CD8+ T-cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol.10(1), 29–37 (2009).
  • Scott AC , DundarF , ZumboPet al. TOX is a critical regulator of tumour-specific T-cell differentiation. Nature571(7764), 270–274 (2019).
  • Toor SM , MurshedK , Al-DhaheriM , KhawarM , AbuNada M , ElkordE. Immune checkpoints in circulating and tumor-infiltrating CD4(+) T-cell subsets in colorectal cancer patients. Front. Immunol.10, 2936 (2019).
  • Tseng YH , HoHL , LaiCRet al. PD-L1 expression of tumor cells, macrophages, and immune cells in non-small-cell lung cancer patients with malignant pleural effusion. J. Thorac. Oncol.13(3), 447–453 (2018).
  • Brochez L , MeiresonA , ChevoletI , SundahlN , OstP , KruseV. Challenging PD-L1 expressing cytotoxic T cells as a predictor for response to immunotherapy in melanoma. Nat. Commun.9(1), 2921 (2018).
  • Xu B , YuanL , GaoQet al. Circulating and tumor-infiltrating Tim-3 in patients with colorectal cancer. Oncotarget6(24), 20592–20603 (2015).
  • Bestor TH , EdwardsJR , BoulardM. Notes on the role of dynamic DNA methylation in mammalian development. Proc. Natl Acad. Sci. USA112(22), 6796–6799 (2015).
  • Lichtenstein AV , KisseljovaNP. DNA methylation and carcinogenesis. Biochemistry Mosc.66(3), 235–255 (2001).
  • Wu J , ShiH. Unlocking the epigenetic code of T-cell exhaustion. Transl. Cancer Res.6(Suppl. 2), S384–S387 (2017).
  • Yang R , ChengS , LuoNet al. Distinct epigenetic features of tumor-reactive CD8+ T cells in colorectal cancer patients revealed by genome-wide DNA methylation analysis. Genome Biol.21(1), 2 (2019).
  • Coit P , DozmorovMG , MerrillJTet al. Epigenetic reprogramming in naive CD4+ T cells favoring T-cell activation and nonTh1 effector T-cell immune response as an early event in lupus flares. Arthritis Rheumatol.68(9), 2200–2209 (2016).
  • Xia A , ZhangY , XuJ , YinT , LuXJ. T-cell dysfunction in cancer immunity and immunotherapy. Front. Immunol10, 1719 (2019).
  • Derks S , BoschLJ , NiessenHEet al. Promoter CpG island hypermethylation- and H3K9me3 and H3K27me3-mediated epigenetic silencing targets the deleted in colon cancer (DCC) gene in colorectal carcinogenesis without affecting neighboring genes on chromosomal region 18q21. Carcinogenesis30(6), 1041–1048 (2009).
  • Fahrner JA , EguchiS , HermanJG , BaylinSB. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res.62(24), 7213–7218 (2002).
  • Healey MA , HuR , BeckAHet al. Association of H3K9me3 and H3K27me3 repressive histone marks with breast cancer subtypes in the Nurses’ Health study. Breast Cancer Res. Treat.147(3), 639–651 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.