235
Views
3
CrossRef citations to date
0
Altmetric
Review

The Influence of Lifestyle Factors on MiRNA Expression and Signal Pathways: A Review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 145-164 | Received 16 Jul 2020, Accepted 23 Nov 2020, Published online: 23 Dec 2020

References

  • Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2), 281–297 (2004).
  • Huntzinger E , IzaurraldeE. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet.12(2), 99–110 (2011).
  • Machado MT , NavegaS , DiasF , DeSousa MJC , TeixeiraAL , MedeirosR. MicroRNAs for peripheral blood fraction identification: origin, pathways and forensic relevance. Life Sci.143, 98–104 (2015).
  • Hanson EK , LubenowH , BallantyneJ. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal. Biochem.387(2), 303–314 (2009).
  • Calin GA , CroceCM. MicroRNA signatures in human cancers. Nat. Rev. Cancer.6(11), 857–866 (2006).
  • Croce CM , CalinGA. miRNAs, cancer, and stem cell division. Cell122(1), 6–7 (2005).
  • Ambros V , LeeRC. Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol. Biol.265, 131–158 (2004).
  • Lewis BP , ShihIH , Jones-RhoadesMW , BartelDP , BurgeCB. Prediction of mammalian microRNA targets. Cell115(7), 787–798 (2003).
  • Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell136(2), 215–233 (2009).
  • Ardekani AM , NaeiniMM. The role of microRNAs in human diseases - PubMed. Avicenna J. Med. Biotechnol.2(4), 161–179 (2010).
  • Alegría-Torres JA , BaccarelliA , BollatiV. Epigenetics and lifestyle. Epigenomics3(3), 267–277 (2011).
  • Tumolo MR , PanicoA , DeDonno Aet al. The expression of microRNAs and exposure to environmental contaminants related to human health: a review. Int. J. Environ. Health Res.1–23 (2020).
  • American Psychological Association . Thesaurus of Psychological Index Terms - Google Libri. https://books.google.it/books/about/Thesaurus_of_Psychological_Index_Terms.html?id=EvoCizBMoIQC&redir_esc=y
  • Barbaresko J , RienksJ , NöthlingsU. Lifestyle indices and cardiovascular disease risk: a meta-analysis. Am. J. Prev. Med.55(4), 555–564 (2018).
  • Weiderpass E . Lifestyle and cancer risk. J. Prev. Med. Public Heal.43(6), 459–471 (2010).
  • Kozomara A , BirgaoanuM , Griffiths-JonesS. miRBase: from microRNA sequences to function. Nucleic Acids Res.47(D1), D155–D162 (2019).
  • Griffiths-Jones S , SainiHK , Van DongenS , EnrightAJ. miRBase: tools for microRNA genomics. Nucleic Acids Res.36(Suppl. 1), D154–158 (2008).
  • miRTarBase . miRTarBase: the experimentally validated microRNA-target interactions database. http://mirtarbase.cuhk.edu.cn/php/index.php
  • Bruins MJ , Van DaelP , EggersdorferM. The role of nutrients in reducing the risk for noncommunicable diseases during aging. Nutrients.11(1), 85 (2019).
  • Medical Research Council . A review undertaken by the MRC in partnership with NIHR and on behalf of OSCHR partners 2. https://mrc.ukri.org/documents/pdf/review-of-nutrition-and-human-health/
  • Villarini M , LevoratoS , SalvatoriTet al. Buccal micronucleus cytome assay in primary school children: a descriptive analysis of the MAPEC_LIFE multicenter cohort study. Int. J. Hyg. Environ. Health.221(6), 883–892 (2018).
  • Tarallo S , PardiniB , MancusoGet al. MicroRNA expression in relation to different dietary habits: a comparison in stool and plasma samples. Mutagenesis29(5), 385–391 (2014).
  • Bonauer A , DimmelerS. The microRNA-17∼92 cluster: still a miRacle?Cell Cycle.8(23), 3866–3873 (2009).
  • Humphreys KJ , ConlonMA , YoungGPet al. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev. Res.7(8), 786–795 (2014).
  • Malcomson FC , WillisND , McCallumIet al. Non-digestible carbohydrates supplementation increases miR-32 expression in the healthy human colorectal epithelium: a randomized controlled trial. Mol. Carcinog.56(9), 2104–2111 (2017).
  • Zarnegar BJ , WangY , MahoneyDJet al. Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat. Immunol.9(12), 1371–1378 (2008).
  • McCann SE , LiuS , WangDet al. Reduction of dietary glycaemic load modifies the expression of microRNA potentially associated with energy balance and cancer pathways in pre-menopausal women. Br. J. Nutr.109(4), 585–592 (2013).
  • Fair AM , DaiQ , ShuXOet al. Energy balance, insulin resistance biomarkers, and breast cancer risk. Cancer Detect. Prev.31(3), 214–219 (2007).
  • Jenkins DJA , KendallCWC , MarchieAet al. Dose response of almonds on coronary heart disease risk factors: blood lipids, oxidized low-density lipoproteins, lipoprotein(a), homocysteine, and pulmonary nitric oxide: a randomized, controlled, crossover trial. Circulation106(11), 1327–1332 (2002).
  • Ortega FJ , Cardona-AlvaradoMI , MercaderJMet al. Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs. J. Nutr. Biochem.26(10), 1095–1101 (2015).
  • Hernández-Alonso P , GiardinaS , Salas-SalvadóJ , ArcelinP , BullóM. Chronic pistachio intake modulates circulating microRNAs related to glucose metabolism and insulin resistance in prediabetic subjects. Eur. J. Nutr.56(6), 2181–2191 (2017).
  • Terzo S , BaldassanoS , CaldaraGFet al. Health benefits of pistachios consumption. Nat. Prod. Res.33(5), 715–726 (2019).
  • Gurzov EN , EizirikDL. Bcl-2 proteins in diabetes: mitochondrial pathways of β-cell death and dysfunction. Trends Cell Biol.21(7), 424–431 (2011).
  • Pasiakos SM . Metabolic advantages of higher protein diets and benefits of dairy foods on weight management, glycemic regulation, and bone. J. Food Sci.80(S1), A2–A7 (2015).
  • Ramzan F , MitchellCJ , MilanAMet al. Comprehensive profiling of the circulatory miRNAome response to a high protein diet in elderly men: a potential role in inflammatory response modulation. Mol. Nutr. Food Res.63(8), e1800811 (2019).
  • Mulligan ML , FeltonSK , RiekAE , Bernal-MizrachiC. Implications of vitamin D deficiency in pregnancy and lactation. Am. J. Obstet. Gynecol.202(5), 429.e1–429.e9 (2010).
  • Enquobahrie DA , WilliamsMA , QiuC , SiscovickDS , SorensenTK. Global maternal early pregnancy peripheral blood mRNA and miRNA expression profiles according to plasma 25-hydroxyvitamin D concentrations. J. Matern. Neonatal Med.24(8), 1002–1012 (2011).
  • Alehagen U , AlexanderJ , AasethJ. Supplementation with selenium and coenzyme Q10 reduces cardiovascular mortality in elderly with low selenium status. A secondary analysis of a randomised clinical trial. PLoS ONE11(7), e0157541 (2016).
  • Alehagen U , JohanssonP , AasethJ , AlexanderJ , WågsäterD. Significant changes in circulating microRNA by dietary supplementation of selenium and coenzyme Q10 in healthy elderly males. A subgroup analysis of a prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. PLoS ONE12(4), e0174880 (2017).
  • Ovchinnikova ES , SchmitterD , VegterELet al. Signature of circulating microRNAs in patients with acute heart failure. Eur. J. Heart Fail.18(4), 414–423 (2016).
  • Wei C , HendersonH , SpradleyCet al. Circulating miRNAs as potential marker for pulmonary hypertension. PLoS ONE8(5), e64396 (2013).
  • Sciatti E , LombardiC , RaveraAet al. Nutritional deficiency in patients with heart failure. Nutrients8(7), 442 (2016).
  • Ramzan F , D’SouzaRF , DurainayagamBRet al. Inflexibility of the plasma miRNA response following a high-carbohydrate meal in overweight insulin-resistant women. Genes Nutr.15(1), 2 (2020).
  • Banerjee N , BandyopadhyayAK , DuttaSet al. Increased microRNA 21 expression contributes to arsenic induced skin lesions, skin cancers and respiratory distress in chronically exposed individuals. Toxicology378, 10–16 (2017).
  • Costa C , TeodoroM , RugoloCAet al. MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: new challenges in pesticides exposure. Toxicol. Reports7, 759–767 (2020).
  • Collotta M , BertazziPA , BollatiV. Epigenetics and pesticides. Toxicology307, 35–41 (2013).
  • Panico A , GrassiT , BagordoFet al. Micronucleus frequency in exfoliated buccal cells of children living in an industrialized area of Apulia (Italy). Int. J. Environ. Res. Public Health.17(4), 1208 (2020).
  • Hughes L , PatonB , RosenblattB , GissaneC , PattersonSD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br. J. Sports Med.51(13), 1003–1011 (2017).
  • Dufresne S , RébillardA , MutiP , FriedenreichCM , BrennerDR. A review of physical activity and circulating miRNA expression: implications in cancer risk and progression. Cancer Epidemiol. Biomarkers Prev.27(1), 11–24 (2018).
  • Wahl P , WehmeierUF , JansenFJet al. Acute effects of different exercise protocols on the circulating vascular microRNAs -16, -21, and -126 in trained subjects. Front. Physiol.7, 643 (2016).
  • Baggish AL , HaleA , WeinerRBet al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J. Physiol.589(16), 3983–3994 (2011).
  • Zhu K , PanQ , ZhangXet al. MiR-146a enhances angiogenic activity of endothelial cells in hepatocellular carcinoma by promoting PDGFRA expression - PubMed. Carcinogenesis34(9), 2071–2079 (2013).
  • Aoi W , IchikawaH , MuneKet al. Muscle-enriched micro RNA miR-486 decreases in circulation in response to exercise in young men. Front. Physiol.4, 80 (2013).
  • Li Y , YaoM , ZhouQet al. Dynamic regulation of circulating microRNAs during acute exercise and long-term exercise training in basketball athletes. Front. Physiol.9, 282 (2018).
  • Uhlemann M , Möbius-WinklerS , FikenzerSet al. Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults. Eur. J. Prev. Cardiol.21(4), 484–491 (2014).
  • Nielsen S , ÅkerströmT , RinnovAet al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS ONE9(2), e87308 (2014).
  • Warhol MJ , SiegelAJ , EvansWJ , SilvermanLM. Skeletal muscle injury and repair in marathon runners after competition - PubMed. Am. J. Pathol.118(2), 331–339 (1985).
  • Gomes CPC , Oliveira-GPJr , MadridB , AlmeidaJA , FrancoOL , PereiraRW. Circulating miR-1, miR-133a, and miR-206 levels are increased after a half-marathon run. Biomarkers.19(7), 585–589 (2014).
  • De Gonzalo-Calvo D , DávalosA , MonteroAet al. Circulating inflammatory miRNA signature in response to different doses of aerobic exercise. J. Appl. Physiol.119(2), 124–134 (2015).
  • Baggish AL , ParkJ , MinPKet al. Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise. J. Appl. Physiol.116(5), 522–531 (2014).
  • Clauss S , WakiliR , HildebrandBet al. MicroRNAs as biomarkers for acute atrial remodeling in marathon runners (the miRathon study - a sub-study of the Munich marathon study). PLoS ONE11(2), e0148599 ( 2016).
  • Mooren FC , ViereckJ , KrügerK , ThumT. Circulating micrornas as potential biomarkers of aerobic exercise capacity. Am. J. Physiol. - Hear. Circ. Physiol.306(4), H557–H563 (2014).
  • Cui S , SunB , YinXet al. Time-course responses of circulating microRNAs to three resistance training protocols in healthy young men. Sci. Rep.7(1), 2203 (2017).
  • Margolis LM , LessardSJ , EzzyatY , FieldingRA , RivasDA. Circulating microRNA are predictive of aging and acute adaptive response to resistance exercise in men - PubMed. J. Gerontol. A Biol. Sci. Med. Sci.72(10), 1319–1326 (2017).
  • Vogel J , NiedererD , EngeroffTet al. Effects on the profile of circulating miRNAs after single bouts of resistance training with and without blood flow restriction—a three-arm, randomized crossover trial. Int. J. Mol. Sci.20(13), 3249 (2019).
  • D’Souza RF , MarkworthJF , AasenKMM , ZengN , Cameron-SmithD , MitchellCJ. Acute resistance exercise modulates microRNA expression profiles: combined tissue and circulatory targeted analyses. PLoS ONE12(7), e0181594 (2017).
  • Sawada S , KonM , WadaS , UshidaT , SuzukiK , AkimotoT. Profiling of circulating MicroRNAs after a bout of acute resistance exercise in humans. PLoS ONE8(7), e70823 (2013).
  • LaMonte MJ , BarlowCE , JurcaR , KampertJB , ChurchTS , BlairSN. Cardiorespiratory fitness is inversely associated with the incidence of metabolic syndrome: a prospective study of men and women. Circulation112(4), 505–512 (2005).
  • Bye A , RøsjøH , AspenesST , CondorelliG , OmlandT , WisløffU. Circulating microRNAs and aerobic fitness - the HUNT study. PLoS ONE8(2), e57496 (2013).
  • Soci UPR , FernandesT , BaraunaVGet al. Epigenetic control of exercise training-induced cardiac hypertrophy by miR-208. Clin. Sci.130(22), 2005–2015 (2016).
  • Poliseno L , TuccoliA , MarianiLet al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood108(9), 3068–3071 (2006).
  • Denham J , GrayAJ , Scott-HamiltonJ , HagstromAD , MurphyAJ. Small non-coding RNAs are altered by short-term sprint interval training in men. Physiol. Rep.6(7), e13653 (2018).
  • Davidsen PK , GallagherIJ , HartmanJWet al. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J. Appl. Physiol.110(2), 309–317 (2011).
  • Wardle SL , BaileyMES , KilikeviciusAet al. Plasma microRNA levels differ between endurance and strength athletes. PLoS ONE10(4), e0122107 (2015).
  • Liu LZ , LiC , ChenQet al. Mir-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS ONE6(4), e19139 (2011).
  • Sheedy FJ . Turning 21: induction of miR-21 as a key switch in the inflammatory response. Front. Immunol.6, 19 (2015).
  • Huang MB , XuH , XieSJ , ZhouH , QuLH. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS ONE6(12), e29173 (2011).
  • Small EM , O’RourkeJR , MoresiVet al. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc. Natl Acad. Sci. USA107(9), 4218–4223 (2010).
  • WHO . WHO report on the global tobacco epidemic 2017. www.who.int/tobacco/global_report/2017/en/
  • Dhahri W , DussaultS , HaddadPet al. Reduced expression of let-7f activates TGF-β/ALK5 pathway and leads to impaired ischaemia-induced neovascularization after cigarette smoke exposure. J. Cell. Mol. Med.21(9), 2211–2222 (2017).
  • de Ronde MWJ , KokMGM , MoerlandPDet al. High miR-124-3p expression identifies smoking individuals susceptible to atherosclerosis. Atherosclerosis263, 377–384 (2017).
  • Badrnya S , BaumgartnerR , AssingerA. Smoking alters circulating plasma microvesicle pattern and microRNA signatures. Thromb. Haemost.112(1), 128–136 (2014).
  • Raitoharju E , LyytikäinenLP , LevulaMet al. MiR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis219(1), 211–217 (2011).
  • Mobarrez F , HeS , BröijersenAet al. Atorvastatin reduces thrombin generation and expression of tissue factor, p-selectin and GPIIIa on platelet-derived microparticles in patients with peripheral arterial occlusive disease. Thromb. Haemost.106(2), 344–352 (2011).
  • Takahashi K , YokotaS , TatsumiN , FukamiT , YokoiT , NakajimaM. Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects. Toxicol. Appl. Pharmacol.272(1), 154–160 (2013).
  • Cookson VJ , BentleyMA , HoganBVet al. Circulating microRNA profiles reflect the presence of breast tumours but not the profiles of microRNAs within the tumours. Cell. Oncol.35(4), 301–308 (2012).
  • Zeng X , XiangJ , WuMet al. Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. PLoS ONE7(10), e46367 (2012).
  • Héliot A , LandkoczY , RoySaint-Georges Fet al. Smoker extracellular vesicles influence status of human bronchial epithelial cells. Int. J. Hyg. Environ. Health.220(2), 445–454 (2017).
  • Willinger CM , RongJ , TanriverdiKet al. MicroRNA signature of cigarette smoking and evidence for a putative causal role of MicroRNAs in smoking-related inflammation and target organ damage. Circ. Cardiovasc. Genet.10(5), e001678 (2017).
  • Metzler-Guillemain C , VictoreroG , LepoivreCet al. Sperm mRNAs and microRNAs as candidate markers for the impact of toxicants on human spermatogenesis: an application to tobacco smoking. Syst. Biol. Reprod. Med.61(3), 139–149 (2015).
  • Marczylo EL , AmoakoAA , KonjeJC , GantTW , MarczyloTH. Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern?Epigenetics.7(5), 432–439 (2012).
  • Wang G , WangR , Strulovici-BarelYet al. Persistence of smoking-induced dysregulation of MiRNA expression in the small airway epithelium despite smoking cessation. PLoS ONE10(4), e0120824 (2015).
  • Andersson BÅ , SayardoustS , LöfgrenS , RutqvistLE , Laytragoon-LewinN. Cigarette smoking affects microRNAs and inflammatory biomarkers in healthy individuals and an association to single nucleotide polymorphisms is indicated. Biomarkers.24(2), 180–185 (2019).
  • Elfiky AM , AhmedMahmoud A , ZeidanHM , MostafaSoliman M. Association between circulating microRNA-126 expression level and tumour necrosis factor alpha in healthy smokers. Biomarkers.24(5), 469–477 (2019).
  • Rizk SA , MetwallyFM , ElfikyAMet al. Down-regulation of circulating microRNA let-7a in Egyptian smokers. J. Genet. Eng. Biotechnol.16(1), 53–56 (2018).
  • Su MW , YuSL , LinWC , TsaiCH , ChenPH , LeeYL. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells. Toxicol. Appl. Pharmacol.305, 169–175 (2016).
  • Maccani MA , Avissar-WhitingM , BanisterCE , McGonnigalB , PadburyJF , MarsitCJ. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21 and miR-146a in the placenta. Epigenetics.5(7), 583–589 (2010).
  • Juracek J , PilerP , JankuP , RadovaL , SlabyO. Identification of microRNA signatures in umbilical cord blood associated with maternal characteristics. Peer J.7, e6981 (2019).
  • Herberth G , BauerM , GaschMet al. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J. Allergy Clin. Immunol.133(2), 543–550 (2014).
  • Takamizawa J , KonishiH , YanagisawaKet al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res.64(11), 3753–3756 (2004).
  • Idolo A , GrassiT , BagordoFet al. Micronuclei in exfoliated buccal cells of children living in a cluster area of Salento (Southern Italy) with a high incidence of lung cancer: the IMP AIR study. Int. J. Environ. Res. Public Health.15(8), 1659 (2018).
  • Zhou Y , ZhengJ , LiS , ZhouT , ZhangP , BinLi H. Alcoholic beverage consumption and chronic diseases. Int. J. Environ. Res. Public Health.13(6), 522 (2016).
  • Miranda RC , PietrzykowskiAZ , TangYet al. MicroRNAs: master regulators of ethanol abuse and toxicity? Alcohol. Clin. Exp. Res. 34(4), 575–587 (2010).
  • Oshea RS , DasarathyS , McCulloughAJ. Alcoholic liver disease. Am. J. Gastroenterol.105(1), 14–32 (2010).
  • ten Berg PW , ShafferJ , VliegenthartADBet al. Attending a social event and consuming alcohol is associated with changes in serum microRNA: a before and after study in healthy adults. Biomarkers.23(8), 781–786 (2018).
  • McCrae JC , SharkeyN , WebbDJ , VliegenthartADB , DearJW. Ethanol consumption produces a small increase in circulating MIR-122 in healthy individuals. Clin. Toxicol.54(1), 53–55 (2016).
  • Zhang Y , JiaY , ZhengRet al. Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin. Chem.56(12), 1830–1838 (2010).
  • Mandal C , HalderD , JungKH , ChaiYG. Maternal alcohol consumption and altered miRNAs in the developing fetus: context and future perspectives. J. Appl. Toxicol.38(1), 100–107 (2018).
  • Gardiner AS , GutierrezHL , LuoLet al. Alcohol use during pregnancy is associated with specific alterations in microRNA levels in maternal serum. Alcohol. Clin. Exp. Res.40(4), 826–837 (2016).
  • Balaraman S , SchaferJJ , TsengAMet al. Plasma miRNA profiles in pregnant women predict infant outcomes following prenatal alcohol exposure. PLoS ONE11(11), e0165081 (2016).
  • Gidron Y , DeZwaan M , QuintK , OckerM. Influence of stress and health-behaviour on miRNA expression. Mol. Med. Rep.3(3), 455–457 (2010).
  • Turchinovich A , WeizL , BurwinkelB. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem. Sci.37(11), 460–465 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.