387
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Regulation of Adipogenesis by Histone-Modifying Enzymes

, , , & ORCID Icon
Pages 235-251 | Received 28 Jul 2020, Accepted 14 Dec 2020, Published online: 27 Jan 2021

References

  • Ambele MA , DhanrajP , GilesR , PepperMS. Adipogenesis: a complex interplay of multiple molecular determinants and pathways. Int. J. Mol. Sci.21(12) E4283 (2020).
  • Nic-Can GI , Rodas-JuncoBA , Carrillo-CocomLMet al. Epigenetic regulation of adipogenic differentiation by histone lysine demethylation. Int. J. Mol. Sci.20(16), 3918 (2019).
  • Lee JE , SchmidtH , LaiB , GeK. Transcriptional and epigenomic regulation of adipogenesis. Mol. Cell Biol.39(11) e00601–00618 (2019).
  • Rosen ED , SpiegelmanBM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature444(7151) 847–853 (2006).
  • Stern JH , RutkowskiJM , SchererPE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab.23, 770–784 (2016).
  • Zoico E , RubeleS , DeCaro Aet al. Brown and beige adipose tissue and aging. Front. Endocrinol.10, 368 (2019).
  • Tiraby C , LanginD. Conversion from white to brown adipocytes: a strategy for the control of fat mass?Trends Endocrinol. Metab.14(10) 439–441 (2003).
  • Wu J , BostromP , SparksLMet al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell150(2), 366–376 (2012).
  • Xue B , RimJ-S , HoganJC , CoulterAA , KozaRA , KozakLP. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J. Lipid Res.48(1) 41–51 (2012).
  • Wang QA , TaoC , GuptaRK , SchererPE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med.19(10) 1338–1344 (2013).
  • Tang QQ , LaneMD. Adipogenesis: From stem cell to adipocyte. Annu. Rev. Biochem.81, 715–736 (2012).
  • Siersback R , NielsenR , JohnSet al. Extensive chromatin remodelling and establishment of transcription factor ‘hotspots’ during early adipogenesis. EMBO J.30(8) 1459–1472 (2011).
  • Cao Z , UmekRM , McknightSL. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev.5(9) 1538–1552 (1991).
  • Kassem M . Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells6(5) 369–374 (2004).
  • Kim W , KimM , JhoEH. Wnt/beta-catenin signalling: from plasma membrane to nucleus. Biochem. J.450(1) 9–21 (2013).
  • Farmer SR . Transcriptional control of adipocyte formation. Cell Metab.4(4) 263–273 (2006).
  • Han JM , YoonYS. Epigenetic landscape of pluripotent stem cells. Antioxid. Redox Signal17, 205–223 (2002).
  • Zhang G , PradhanS. Mammalian epigenetic mechanisms. IUBMB Life66(4) 240–256 (2014).
  • Russo GL , VastoloV , CiccarelliM , AlbanoL , MacchiaPE , UngaroP. Dietary polyphenols and chromatin remodeling. Crit. Rev. Food Sci. Nutr.57(12) 2589–2599 (2017).
  • Patel DJ , WangZ. Readout of epigenetic modifications. Annu. Rev. Biochem.82, 81–118 (2014).
  • Nettore IC , RoccaC , MancinoGet al. Quercetin and its derivative Q2 modulate chromatin dynamics in adipogenesis and Q2 prevents obesity and metabolic disorders in rats. J. Nutr. Biochem.69, 151–162 (2019).
  • Rothbart SB , StrahlBD. Interpreting the language of histone and DNA modifications. Biochim. Biophys. Acta1839(8) 627–643 (2014).
  • Kouzarides T . Chromatin Mofdifications and their Function. Cell128(4), 693–705 (2007).
  • Siersbaek R , MadsenJGS , JavierreBMet al. Dynamic rewiring of promoter-anchored chromatin loops during adipocyte differentiation. Mol Cell66(3), 420–435 e425 (2017).
  • Egger G , LiangG , AparicioA , JonesPA. Epigenetics in human disease and prospects for epigenetic therapy. Nature429(6990) 457–463 (2004).
  • Li B , CareyM , WorkmanJL. The role of chromatin during transcription. Cell128(4) 707–719 (2007).
  • Wang L , XuS , LeeJEet al. Histone H3K9 methyltransferase G9a represses PPARgamma expression and adipogenesis. EMBO J.32(1) 45–59 (2013).
  • Ohno H , ShinodaK , OhyamaK , SharpLZ , KajimuraS. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature504(7478) 163–167 (2013).
  • Zhang ZC , LiuY , LiSFet al. Suv39h1 mediates AP-2alpha-dependent inhibition of C/EBPalpha expression during adipogenesis. Mol. Cell Biol.34(12) 2330–2338 (2014).
  • Simon JA , KingstonRE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell Biol.10(10) 697 (2009).
  • Matsumura Y , NakakiR , InagakiTet al. H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation. Mol. Cell60(4) 584–596 (2015).
  • Zhuang L , JangY , ParkYKet al. Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function. Nat. Commun.9(1) 1796 (2018).
  • Yuan W , XuM , HuangC , LiuN , ChenS , ZhuB. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem.286(10) 7983–7989 (2011).
  • Wang C , LeeJE , LaiBet al. Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition. Proc. Natl Acad. Sci. USA113(42) 11871–11876 (2016).
  • Creyghton MP , ChengAW , WelsteadGGet al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA107(50), 21931–21936 (2010).
  • Jang Y , BrounA , WangCet al. H3.3K4M destabilizes enhancer H3K4 methyltransferases MLL3/MLL4 and impairs adipose tissue development. Nucleic Acids Res.47(2) 607–620 (2018).
  • Yadav N , ChengD , RichardSet al. CARM1 promotes adipocyte differentiation by coactivating PPARg. EMBO Rep.9(2) 193–198 (2008).
  • Duteil D , MetzgerE , WillmannDet al. LSD1 promotes oxidative metabolism of white adipose tissue. Nat. Commun.5(5)4093 (2014).
  • Duteil D , TosicM , LauseckerFet al. LSD1 ablation triggers metabolic reprogramming of brown adipose tissue. Cell Rep.17(4) 1008–1021 (2016).
  • Sambeat A , GulyaevaO , DempersmierJet al. LSD1 interacts with Zfp516 to promote UCP1 transcription and brown fat program. Cell Rep.15(11) 2536–2549 (2016).
  • Chen Y , KimJ , ZhangRet al. Histone demethylase LSD1 promotes adipocyte differentiation through repressing Wnt signaling. Cell Chem. Biol.23(10) 1228–1240 (2016).
  • Tateishi K , OkadaY , KallinEM , ZhangY. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature458(7239) 757–761 (2009).
  • Takeshi I , MakotoT , KentaMet al. Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells14(8) 991–1001 (2009).
  • Okuno Y , OhtakeF , IgarashiKet al. Epigenetic regulation of adipogenesis by PHF2 histone demethylase. Diabetes62(5) 1426–1434 (2013).
  • Guo L , GuoYY , LiBY , PengWQ , TangQQ. Histone demethylase KDM5A is transactivated by the transcription factor C/EBP-β and promotes preadipocyte differentiation by inhibiting Wnt/β-catenin signaling. J. Biol. Chem.294(24) 9642–9654 (2019).
  • Ota K , TongKI , GotoKet al. The H3K27 demethylase, Utx, regulates adipogenesis in a differentiation stage- dependent manner. PLoS One12(3) e0173713 (2017).
  • Jang MK , KimJH , JungMH. Histone H3K9 demethylase JMJD2B activates adipogenesis by regulating H3K9 methylation on PPARgamma and C/EBPalpha during Adipogenesis. PLoS One12(1) e0168185 (2017).
  • Kang C , SasoK , OtaK , KawazuM , UedaT , OkadaH. JMJD2B/KDM4B inactivation in adipose tissues accelerates obesity and systemic metabolic abnormalities. Genes Cells23(9) 767–777 (2018).
  • Cheng Y , YuanQ , VergnesLet al. KDM4B protects against obesity and metabolic dysfunction. Proc. Natl Acad. Sci. USA115(24) E5566–E5575 (2018).
  • Wiper-Bergeron N , SalemHA , TomlinsonJJ , WuD , HacheRJ. Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPbeta by GCN5. Proc. Natl. Acad. Sci. U.S.A104(8) 2703–2708 (2007).
  • Cherasse Y , MaurinAC , ChaverouxCet al. The p300/CBP-associated factor (PCAF) is a cofactor of ATF4 for amino acid-regulated transcription of CHOP. Nucleic Acids Res.35(17) 5954–5965 (2007).
  • Gao Y , KoppenA , RakhshandehrooMet al. Early adipogenesis is regulated through USP7-mediated deubiquitination of the histone acetyltransferase TIP60. Nat. Commun.4, 2656 (2013).
  • Van Beekum O , BrenkmanAB , GrøntvedLet al. The adipogenic acetyltransferase Tip60 targets activation function 1 of peroxisome proliferator-activated receptor gamma. Endocrinology149(4) 1840–1849 (2008).
  • Haberland M , CarrerM , MokalledMH , MontgomeryRL , OlsonEN. Redundant control of adipogenesis by histone deacetylases 1 and 2. J. Biol. Chem.285(19) 14663–14670 (2010).
  • Weems JC , GrieselBA , OlsonAL. Class II histone deacetylases downregulate GLUT4 transcription in response to increased cAMP signaling in cultured adipocytes and fasting mice. Diabetes61(6) 1404–1414 (2012).
  • Wang F , TongQ. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARgamma. Mol. Biol. Cell20(3) 801–808 (2009).
  • Fang J , IanniA , SmolkaCet al. Sirt7 promotes adipogenesis in the mouse by inhibiting autocatalytic activation of Sirt1. Proc. Natl Acad. Sci. USA114(40) E8352–E8361 (2017).
  • Chen Q , HaoW , XiaoCet al. SIRT6 is essential for adipocyte differentiation by regulating mitotic clonal expansion. Cell Rep.18(13) 3155–3166 (2017).
  • Lee JE , ParkYK , ParkSet al. Brd4 binds to active enhancers to control cell identity gene induction in adipogenesis and myogenesis. Nat. Commun.8(1) 2217 (2017).
  • Brown JD , FeldmanZB , DohertySPet al. BET bromodomain proteins regulate enhancer function during adipogenesis. Proc. Natl Acad. Sci. USA115(9) 2144–2149 (2018).
  • Salma N , XiaoH , MuellerE , ImbalzanoAN. Temporal recruitment of transcription factors and SWI/SNF chromatin-remodeling enzymes during adipogenic induction of the peroxisome proliferator-activated receptor gamma nuclear hormone receptor. Mol. Cell Biol.24(11) 4651–4663 (2004).
  • Herz HM , GarrussA , ShilatifardA. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem. Sci.38(12) 621–639 (2013).
  • Barski A , CuddapahS , CuiKet al. High-resolution profiling of histone methylations in the human genome. Cell129(4) 823–837 (2007).
  • Rea S , EisenhaberF , O’carrollDet al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406(6796) 593–599 (2000).
  • Loyola A , TagamiH , BonaldiTet al. The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep.10(7) 769–775 (2009).
  • Fu M , RaoM , BourasTet al. Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma mediated adipogenesis through histone deacetylase recruitment. J. Biol. Chem.280(17) 16934–16941 (2005).
  • Wang L , JinQ , J-E.L , SuI-H , GeK. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc. Natl Acad. Sci. USA107(16) 7317–7322 (2010).
  • Hemming S , CakourosD , IsenmannSet al. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells32(3) 802–815 (2013).
  • Chen Y-H , ChungCC , LiuYCet al. Enhancer of Zeste homolog 2 and histone deacetylase 9c regulate age-dependent mesenchymal stem cell differentiation into osteoblasts and adipocytes. Stem Cells34(8) 2183–2193 (2016).
  • Li Y , TrojerP , XuC-Fet al. The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J. Biol. Chem.284(49) 34283–34295 (2009).
  • Calo E , WysockaJ. Modification of enhancer chromatin: what, how, and why?Mol. Cell49(5) 825–837 (2013).
  • Vastolo V , NettoreIC , CiccarelliMet al. High-fat diet unveils an enhancer element at the Ped/Pea-15 gene responsible for epigenetic memory in skeletal muscle. Metabolism87, 70–79 (2018).
  • Blanc RS , RichardS. Arginine methylation: the coming of age. Mol. Cell65(1) 8–24 (2017).
  • Shi Y , LanF , MatsonCet al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell119(7) 941–953 (2004).
  • Metzger E , WissmannM , YinNet al. LSD1 demethylates repressive histone marks to promote androgen-receptor dependent transcription. Nature437(7057) 436–439 (2005).
  • Seale P , KajimuraS , YangWet al. Transcriptional control of brown fat determination by PRDM16. Cell Metab.6(1) 38–54 (2007).
  • Zeng X , JedrychowskiMP , ChenYet al. Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation. Genes Dev.30(16) 1822–1836 (2016).
  • Fu X , ZhangP , YuB. Advances toward LSD1 inhibitors for cancer therapy. Future Med. Chem.9(11) 1227–1242 (2017).
  • Accari SL , FisherPR. Emerging roles of JmjC domain-containing proteins. Int. Rev. Cell. Mol. Biol.319, 165–220 (2015).
  • Yamane K , ToumazouC , TsukadaYet al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell125(3) 483–495 (2006).
  • Baba A , OhtakeF , OkunoYet al. PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat. Cell Biol.13(6) 668–675 (2011).
  • Qian S , WangY , MaH , ZhangL. Expansion and functional divergence of the JmjC gene family: significance of duplications in ancestral angiosperms and vertebrates. Plant Physiol.168(4) 1321–1337 (2015).
  • Welstead GG , MennoPC , BilodeauSet al. X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc. Natl Acad. Sci. USA109, 13004–13009 (2012).
  • Vetting MW , L.P.SDC , YuMet al. Structure and functions of the GNAT superfamily of acetyltransferases. Arch. Biochem. Biophys.433(1) 212–226 (2005).
  • Reuter S , GuptaSC , ParkB , GoelA , AggarwalBB. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr.6(2) 93–108 (2011).
  • Backesjo CM , LiY , LindgrenU , HaldosenLA. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J. Bone Miner. Res21(7) 993–1002 (2006).
  • Kim SN , ChoiHY , KimYK. Regulation of adipocyte differentiation by histone deacetylase inhibitors. Arch. Pharm. Res.32(4) 535–541 (2009).
  • Barrea L , TarantinoG , DiSomma Cet al. Adherence to the mediterranean diet and circulating levels of sirtuin 4 in obese patients: a novel association. Oxid. Med. Cell. Longevity doi:10.1155/2017/6101254 (2017).
  • Ladurner AG . Rheostat control of gene expression by metabolites. Mol. Cell24(1), 1–11 (2006).
  • Christensen BC , MarsitCJ. Epigenomics in environmental health. Front. Genet.2, 84 (2011).
  • Radford EJ , ItoM , ShiHet al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science345(6198), 1255903 (2014).
  • Roseboom TJ , VanDer Meulen JH , RavelliAC , OsmondC , BarkerDJ , BlekerOP. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol. Cell. Endocrinol.185(1–2), 93–98 (2001).
  • Sakata SF , ShellyLL , RuppertS , SchutzG , ChouJY. Cloning and expression of murine S-adenosylmethionine synthetase. J. Biol. Chem.268(19), 13978–13986 (1993).
  • Mentch SJ , MehrmohamadiM , HuangLet al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab.22(5), 861–873 (2015).
  • Anand R , MarmorsteinR. Structure and mechanism of lysine-specific demethylase enzymes. J. Biol. Chem.282(49), 35425–35429 (2007).
  • Tsukada Y , FangJ , Erdjument-BromageHet al. Histone demethylation by a family of JmjC domain-containing proteins. Nature439(7078), 811–816 (2006).
  • Hino S , SakamotoA , NagaokaKet al. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat. Commun.3, 758 (2012).
  • Ho C , VanDer Veer E , AkawiO , PickeringJG. SIRT1 markedly extends replicative lifespan if the NAD+ salvage pathway is enhanced. FEBS Lett.583(18), 3081–3085 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.