202
Views
0
CrossRef citations to date
0
Altmetric
Review

Harnessing the Role of Epigenetic Histone Modification in Targeting Head and Neck Squamous Cell Carcinoma

, , , , , & ORCID Icon show all
Pages 279-293 | Received 07 Sep 2020, Accepted 19 Jan 2022, Published online: 21 Feb 2022

References

  • Allemani C , MatsudaT , DiCarlo Vet al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37,513,025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet391(10125), 1023–1075 (2018).
  • Vigneswaran N , WilliamsMD. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac. Surg. Clin. North Am.26(2), 123–41 (2014).
  • Jethwa AR , KhariwalaSS. Tobacco-related carcinogenesis in head and neck cancer. Cancer Metastasis Rev.36(3), 411–423 (2017).
  • Pai SI , WestraWH. Molecular pathology of head and neck cancer: implications for diagnosis, prognosis, and treatment. Annu. Rev. Pathol. Mech. Dis.4, 49–70 (2009).
  • Bray F , FerlayJ , SoerjomataramI , SiegelRL , TorreLA , JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.68(6), 394–424 (2018).
  • Borse V , KonwarAN , BuragohainP. Oral cancer diagnosis and perspectives in India. Sensors Int.1, 100046 (2020).
  • Lund AH , Van LohuizenM. Epigenetics and cancer. Genes Dev.18(19), 36:665–81 (2004).
  • Wagner S , SharmaSJ , WuerdemannNet al. Human papillomavirus-related head and neck cancer. Oncol. Res. Treat.28(10), 2386–2398 (2017).
  • Biswas S , RaoCM. Epigenetic tools (the writers, the readers and the erasers) and their implications in cancer therapy. Eur. J. Pharmacol.837, 8–24 (2018).
  • Crispo F , CondelliV , LeporeSet al. Metabolic dysregulations and epigenetics: a bidirectional interplay that drives tumor progression. Cells8(8), 798 (2019).
  • Castilho RM , SquarizeCH , AlmeidaLO. Epigenetic modifications and head and neck cancer: implications for tumor progression and resistance to therapy. Int. J. Mol. Sci.18(7), 1506 (2017).
  • Le J . Histone modifications: targeting head and neck cancer stem cells. World J. Stem Cells6(5), 511–25 (2014).
  • Sharma S , KellyTK , JonesPA. Epigenetics in cancer. Carcinogenesis31(1), 27–36 (2009).
  • Lu J , GetzG , MiskaEAet al. MicroRNA expression profiles classify human cancers. Nature435(7043), 834–8 (2005).
  • Rogerio M , CastilhoMDM. Histones: controlling tumor signaling circuitry. J. Carcinog. Mutagen.1(Suppl. 5), 1–12 (2013).
  • Audia JE , CampbellRM. Histone modifications and cancer. Cold Spring Harb. Perspect. Biol.8(4), a019521 (2016).
  • Kurdistani SK . Histone modifications as markers of cancer prognosis: a cellular view. Br. J. Cancer97(1), 1–5 (2007).
  • Marmorstein R , ZhouMM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol.6(7), a018762 (2014).
  • Lee KK , WorkmanJL. Histone acetyltransferase complexes: one size doesn’t fit all. Nat. Rev. Mol. Cell Biol.8(4), 284–95 (2007).
  • Wang GG , AllisCD , ChiP. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol. Med.13( 9), 363–72 (2007).
  • Gray S , TehB. Histone acetylation/deacetylation and cancer: an ‘open’ and ‘shut’ case?Curr. Mol. Med.1(4), 401–429 (2005).
  • McBrian MA , BehbahanIS , FerrariRet al. Histone acetylation regulates intracellular pH. Mol. Cell546(7658), 381–386 (2013).
  • Bais MV . Impact of epigenetic regulation on head and neck squamous cell carcinoma. J. Dent. Res.97(1), 1–5 (2019).
  • Leonard B , BrandTM , O’KeefeRAet al. BET inhibition overcomes receptor tyrosine kinase-mediated cetuximab resistance in HNSCC. Cancer Res.78(15), 4331–4343 (2018).
  • Seto E , YoshidaM. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol.6(4), a018713 (2014).
  • Milazzo G , MercatelliD , DiMuzio Get al. Histone deacetylases (HDACs): evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes (Basel)11(5), 556 (2020).
  • Chang HH , ChiangCP , HungHC , LinCY , DengYT , KuoMYP. Histone deacetylase 2 expression predicts poorer prognosis in oral cancer patients. Oral Oncol.45(7), 610–4 (2009).
  • Sakuma T , UzawaK , OndaTet al. Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. Int. J. Oncol.29(1), 117–24 (2006).
  • Cohen I , PorȩbaE , KamieniarzK , SchneiderR. Histone modifiers in cancer: friends or foes?Genes Cancer2(6), 631–47 (2011).
  • Gaździcka J , GołąbekK , StrzelczykJK , OstrowskaZ. Epigenetic modifications in head and neck cancer. Biochem. Genet.58(2), 213–244 (2020).
  • Di Lorenzo A , BedfordMT. Histone arginine methylation. FEBS Lett.585(13), 2024–31 (2011).
  • Hyun K , JeonJ , ParkK , KimJ. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med.49(4), e324 (2017).
  • Saloura V , VougiouklakisT , SieversCet al. The role of protein methyltransferases as potential novel therapeutic targets in squamous cell carcinoma of the head and neck. Oral Oncol.81, 100–108 (2018).
  • Handy DE , CastroR , LoscalzoJ. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation19(2), 169–74 (2011).
  • Zhang T , CooperS , BrockdorffN. The interplay of histone modifications – writers that read. EMBO Rep.16(11), 1467–81 (2015).
  • Kidani K , OsakiM , TamuraTet al. High expression of EZH2 is associated with tumor proliferation and prognosis in human oral squamous cell carcinomas. Oral Oncol.45(1), 39–46 (2009).
  • Mancuso M , MatassaDS , ConteMet al. H3K4 histone methylation in oral squamous cell carcinoma. Acta Biochim. Pol.56(3), 405–10 (2009).
  • Chen JH , YehKT , YangYM , ChangJG , LeeHE , HungSY. High expressions of histone methylation- and phosphorylation-related proteins are associated with prognosis of oral squamous cell carcinoma in male population of Taiwan. Med. Oncol.30(2), 513 (2013).
  • Soto D , SongC , McLaughlin-DrubinME. Epigenetic alterations in human papillomavirus-associated cancers. Viruses9(9), 248 (2017).
  • Oki M , AiharaH , ItoT. Role of histone phosphorylation in chromatin dynamics and its implications in diseases. Subcell. Biochem.41, 319–36 (2007).
  • Rossetto D , AvvakumovN , CôtéJ. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics7(10), 1098–108 (2012).
  • Wu M , KafanasA , GanLet al. Feasibility of immunocytochemical detection of tumor markers (XIAP, phosphohistone H1 and p63) in FNA cellblock samples from head and neck squamous cell carcinoma. Diagn. Cytopathol.36(11), 797–800 (2008).
  • Jessri M , DalleyAJ , FarahCS. Deficient double-strand break repair in oral squamous cell carcinoma cell lines. J. Oral Pathol. Med.46(9), 695–702 (2017).
  • Podhorecka M , SkladanowskiA , BozkoP. H2AX phosphorylation: its role in DNA damage response and cancer therapy. J. Nucleic Acids2010, 920161 (2010).
  • Lee JW , ParameswaranJ , Sandoval-SchaeferTet al. Combined Aurora kinase A (AURKA) and WEE1 inhibition demonstrates synergistic antitumor effect in squamous cell carcinoma of the head and neck. Clin. Cancer Res.25(11), 3430–3442 (2019).
  • Hoellein A , PickhardA , von KeitzFet al. Aurora kinase inhibition overcomes cetuximab resistance in squamous cell cancer of the head and neck. Oncotarget2(8), 599–609 (2011).
  • Pannone G , HindiSAH , SantoroAet al. Aurora B expression as a prognostic indicator and possibile therapeutic target in oral squamous cell carcinoma. Int. J. Immunopathol. Pharmacol.24(1),79–88 (2011).
  • Qi G , OgawaI , KudoYet al. Aurora-B expression and its correlation with cell proliferation and metastasis in oral cancer. Virchows Arch.450(3), 297–302 (2007).
  • Gallo LH , KoJ , DonoghueDJ. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle16(7),634–648 (2017).
  • Deng L , MengT , ChenL , WeiW , WangP. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct. Target. Ther.5(1), 11 (2020).
  • Jones PA , BaylinSB. The epigenomics of cancer. Cell (2007).
  • Füllgrabe J , KavanaghE , JosephB. Histone onco-modifications. Oncogene30(31), 3391–403 (2011).
  • Khammanivong A , GopalakrishnanR , DickersonEB. SMURF1 silencing diminishes a CD44-high cancer stem cell-like population in head and neck squamous cell carcinoma. Mol. Cancer13, 260 (2014).
  • Shema E , TiroshI , AylonYet al. Corrigendum: the histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev.31(18), 1926 (2017).
  • Redon CE , NakamuraAJ , ZhangYWet al. Histone γH2AX and poly(ADP-ribose) as clinical pharmacodynamic biomarkers. Clin. Cancer Res.16(18),4532–42 (2010).
  • Das BR . Increased ADP-ribosylation of histones in oral cancer. Cancer Lett.73(1), 29–34 (1993).
  • Yang H , JinX , DanH , ChenQ. Histone modifications in oral squamous cell carcinoma and oral potentially malignant disorders. Oral Dis.26(4), 719–732 (2020).
  • Kassab MA , YuLL , YuX. Targeting dePARylation for cancer therapy. Cell Biosci.107 (2020).
  • Moody CA , LaiminsLA. Human papillomavirus oncoproteins: pathways to transformation. Nat. Rev. Cancer10(8), 550–60 (2010).
  • Pullos AN , CastilhoRM , SquarizeCH. HPV infection of the head and neck region and its stem cells. J. Dent. Res.94(11), 1532–43 (2015).
  • Low GM , ThylurDS , YamamotoV , SinhaUK. The effect of human papillomavirus on DNA repair in head and neck squamous cell carcinoma. Oral Oncol.61, 27–30 (2016).
  • Stransky N , EgloffAM , TwardADet al. The mutational landscape of head and neck squamous cell carcinoma. Science333(6046), 1157–60 (2011).
  • Melle C , ErnstG , WinklerRet al. Proteomic analysis of human papillomavirus-related oral squamous cell carcinoma: identification of thioredoxin and epidermal-fatty acid binding protein as upregulated protein markers in microdissected tumor tissue. Proteomics9(8),2193–2012009).
  • Nulton TJ , OlexAL , DozmorovM , MorganIM , WindleB.Analysis of The Cancer Genome Atlas sequencing data reveals novel properties of the human papillomavirus 16 genome in head and neck squamous cell carcinoma. Oncotarget8(11), 17684–17699 (2017).
  • Mooren JJ , KremerB , ClaessenSMHet al. Chromosome stability in tonsillar squamous cell carcinoma is associated with HPV16 integration and indicates a favorable prognosis. Int. J. Cancer132(8), 1781–9 (2013).
  • Boscolo-Rizzo P , FurlanC , LupatoV , PoleselJ , FrattaE. Novel insights into epigenetic drivers of oropharyngeal squamous cell carcinoma: role of HPV and lifestyle factors. Clin. Epigenetics9, 124 (2017).
  • Durzynska J , LesniewiczK , PorebaE. Human papillomaviruses in epigenetic regulations. Mutat. Res. Rev. Mutat. Res.772, 36–50 (2017).
  • Patel D , HuangSM , BagliaLA , McCanceDJ. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J.18(18), 5061–72 (1999).
  • Bernat A , AvvakumovN , MymrykJS , BanksL. Interaction between the HPV E7 oncoprotein and the transcriptional coactivator p300. Oncogene22(39),7871–81 (2003).
  • Thomas MC , ChiangCM. E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol. Cell17(2),251–64 (2005).
  • Hasan UA , ZannettiC , ParrochePet al. The human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the Toll-like receptor 9 promoter. J. Exp. Med.210(7),1369–87 (2013).
  • Park JS , KimEJ , KwonHJ , HwangES , NamkoongSE , UmSJ. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J. Biol. Chem.275(10), 6764–9 (2000).
  • Dok R , NuytsS. HPV positive head and neck cancers: molecular pathogenesis and evolving treatment strategies. Cancers (Basel)8(4), 41 (2016).
  • Majchrzak E , SzybiakB , WegnerAet al. Oral cavity and oropharyngeal squamous cell carcinoma in young adults: a review of the literature. Radiol. Oncol.48(1), 1–10 (2014).
  • Boscolo-Rizzo P , DelMistro A , BussuFet al. New insights into human papillomavirus-associated head and neck squamous cell carcinoma. Acta Otorhinolaryngol. Ital.33(2), 77–87 (2013).
  • Deschler DG , RichmonJD , KhariwalaSS , FerrisRL , WangMB. The ‘new’ head and neck cancer patient – young, nonsmoker, nondrinker, and HPV positive: evaluation. Otolaryngol. Head Neck Surg.151(3), 375–80 (2014).
  • Lewis A , KangR , LevineA , MaghamiE. The new face of head and neck cancer: the HPV epidemic. Oncology (Williston Park)29(9), 616–26 (2015).
  • Economopoulou P , KotsantisI , PsyrriA. Special issue about head and neck cancers: HPV positive cancers. Int. J. Mol. Sci.21(9), 3388 (2020).
  • Kobayashi K , HisamatsuK , SuzuiN , HaraA , TomitaH , MiyazakiT. A review of HPV-related head and neck cancer. J. Clin. Med.7(9), 241 (2018).
  • Gunduz M , GunduzE , TamagawaS , EnomotoK , HotomiM. Identification and chemoresistance of cancer stem cells in HPV-negative oropharyngeal cancer. Oncol. Lett.1, 965–971 (2020).
  • Alsahafi E , BeggK , AmelioIet al. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis.10(8), 540 (2019).
  • Pickering CR , ZhangJ , YooSYet al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov.3(7), 770–81 (2013).
  • Heerboth S , LapinskaK , SnyderN , LearyM , RollinsonS , SarkarS. Use of epigenetic drugs in disease: an overview. Genet. Epigenetics6, 9–19 (2014).
  • Mithraprabhu S , KalffA , ChowA , KhongT , SpencerA. Dysregulated class I histone deacetylases are indicators of poor prognosis in multiple myeloma. Epigenetics9(11), 1511–20 (2014).
  • He L , GaoL , ShayC , LangL , LvF , TengY. Histone deacetylase inhibitors suppress aggressiveness of head and neck squamous cell carcinoma via histone acetylation-independent blockade of the EGFR–ARF1 axis. J. Exp. Clin. Cancer Res.38(1), 84 (2019).
  • Mann BS , JohnsonJR , CohenMH , JusticeR , PazdurR. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist12(10), 1247–52 (2007).
  • Grabarska A , LuszczkiJJ , NowosadzkaEet al. Histone deacetylase inhibitor SAHA as potential targeted therapy agent for larynx cancer cells. J. Cancer8(1), 19–28 (2017).
  • Haigentz M , KimM , SartaCet al. Phase II trial of the histone deacetylase inhibitor romidepsin in patients with recurrent/metastatic head and neck cancer. Oral Oncol.48(12), 1281–1288 (2012).
  • Blumenschein GR , KiesMS , PapadimitrakopoulouVAet al. Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza™, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Invest. New Drugs26(1), 81–87 (2008).
  • Pan CH , ChangYF , LeeMSet al. Vorinostat enhances the cisplatin-mediated anticancer effects in small cell lung cancer cells. BMC Cancer16(1), 857 (2016).
  • Teknos TN , GreculaJ , AgrawalAet al. A phase 1 trial of vorinostat in combination with concurrent chemoradiation therapy in the treatment of advanced staged head and neck squamous cell carcinoma. Invest. New Drugs37(4), 702–710 (2019).
  • Suraweera A , O’ByrneKJ , RichardDJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front. Oncol.8, 92 (2018).
  • Citro S , BelliniA , MiccoloC , GhianiL , CareyTE , ChioccaS. Synergistic antitumour activity of HDAC inhibitor SAHA and EGFR inhibitor gefitinib in head and neck cancer: a key role for ΔNp63α. Br. J. Cancer120(6), 658–667 (2019).
  • Weng CH , ChenLY , LinYCet al. Epithelial–mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene38(4), (2019).
  • Jeannot V , BusserB , VanwonterghemLet al. Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma. Onco. Targets Ther.9, 6843–6855 (2016).
  • Avallone A , PiccirilloMC , DiGennaro Eet al. Randomized phase II study of valproic acid in combination with bevacizumab and oxaliplatin/fluoropyrimidine regimens in patients with RAS-mutated metastatic colorectal cancer: the REVOLUTION study protocol. Ther. Adv. Med. Oncol.12, 1758835920929589 (2020).
  • Erlich RB , RickwoodD , ComanWB , SaundersNA , GuminskiA. Valproic acid as a therapeutic agent for head and neck squamous cell carcinomas. Cancer Chemother. Pharmacol.16(),1421–1434 (2009).
  • Budillon A , ZottiAI , VitaglianoC , DiGennaro E , CaponigroF. Preclinical and phase-2 clinical study of valproic acid administered in combination with cisplatin and cetuximab in recurrent/metastatic head and neck cancere. Exp. Mol. Ther.77(13), :4058 (2017).
  • Yu C , ZhuangS. Histone methyltransferases as therapeutic targets for kidney diseases. Front. Pharmacol.10, 1393 (2019).
  • Rugo HS , JacobsI , SharmaSet al. The promise for histone methyltransferase inhibitors for epigenetic therapy in clinical oncology: a narrative review. Adv. Ther.37(7), 3059–3082 (2020).
  • Liu CW , HuaKT , LiKCet al. Histone methyltransferase G9a drives chemotherapy resistance by regulating the glutamate–cysteine ligase catalytic subunit in head and neck squamous cell carcinoma. Mol. Cancer Ther.16(7), 1421–1434 (2017).
  • Xu B , KonzeKD , JinJ , WangGG. Targeting EZH2 and PRC2 dependence as novel anticancer therapy. Exp. Hematol.43(8), 698–712 (2015).
  • Bourguignon LYW , WongG , ShiinaM. Up-regulation of histone methyltransferase, DOT1L, by matrix hyaluronan promotes microRNA-10 expression leading to tumor cell invasion and chemoresistance in cancer stem cells from head and neck squamous cell carcinoma. J. Biol. Chem.291(20), 10571–85 (2016).
  • Selvi RB , SwaminathanA , ChatterjeeSet al. Inhibition of p300 lysine acetyltransferase activity by luteolin reduces tumor growth in head and neck squamous cell carcinoma (HNSCC) xenograft mouse model. Oncotarget6(41), 43806–18 (2015).
  • Li F , ShanmugamMK , SiveenKSet al. Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers. Oncotarget6(7), 5147–53 (2015).
  • Kumar B , YadavA , LangJC , TeknosTN , KumarP. Suberoylanilide hydroxamic acid (SAHA) reverses chemoresistance in head and neck cancer cells by targeting cancer stem cells via the downregulation of nanog. Genes Cancer6(3-4), 169–81 (2015).
  • Gailhouste L , LiewLC , HatadaI , NakagamaH , OchiyaT. Epigenetic reprogramming using 5-azacytidine promotes an anti-cancer response in pancreatic adenocarcinoma cells. Cell Death Dis.9(5), 468 (2018).
  • Biktasova A , HajekM , SewellAet al. Demethylation therapy as a targeted treatment for human papillomavirus-associated head and neck cancer. Clin. Cancer Res.23(23), 7276–7287 (2017).
  • Gnyszka A , JastrzȩbskiZ , FlisS. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res.33(8), 2989–2986 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.