197
Views
0
CrossRef citations to date
0
Altmetric
Review

Cell-Specific Epigenetic Drivers of Pathogenesis in Rheumatoid Arthritis

ORCID Icon, &
Pages 549-560 | Received 05 Oct 2020, Accepted 08 Mar 2021, Published online: 06 Apr 2021

References

  • Symmons D , TurnerG , WebbRet al. The prevalence of rheumatoid arthritis in the United Kingdom: new estimates for a new century. Rheumatology (Oxford)41(7), 793–800 (2002).
  • McInnes IB , SchettG. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med.365(23), 2205–2219 (2011).
  • Zhang F , WeiK , SlowikowskiKet al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol.20(7), 928–942 (2019).
  • Huber LC , DistlerO , TarnerI , GayRE , GayS , PapT. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology45, 669–675 (2006).
  • Doorenspleet ME , KlarenbeekPL , de HairMJHet al. Rheumatoid arthritis synovial tissue harbours dominant B-cell and plasma-cell clones associated with autoreactivity. Ann. Rheum. Dis.73(4), 756–762 (2014).
  • Mulherin D , FitzgeraldO , BresnihanB. Synovial tissue macrophage populations and articular damage in rheumatoid arthritis. Arthritis Rheum.39(1), 115–124 (1996).
  • Gizinski AM , FoxDA. T cell subsets and their role in the pathogenesis of rheumatic disease. Curr. Opin. Rheumatol.26(4), 204–210 (2014).
  • Choy E . Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford)51(Suppl. 5), v3–v11 (2012).
  • Klein K , OspeltC , GayS. Epigenetic contributions in the development of rheumatoid arthritis. Arthritis Res. Ther.14(6), 227 (2012).
  • Kukar M , PetrynaO , EfthimiouP. Biological targets in the treatment of rheumatoid arthritis: a comprehensive review of current and in-development biological disease modifying anti-rheumatic drugs. Biologics3, 443–457 (2009).
  • Plant D , WilsonAG , BartonA. Genetic and epigenetic predictors of responsiveness to treatment in RA. Nat. Rev. Rheumatol.10(6), 329–337 (2014).
  • Nair N , WilsonAG , BartonA. DNA methylation as a marker of response in rheumatoid arthritis. Pharmacogenomics18(14), 1323–1332 (2017).
  • Standish KA , HuangCC , CurranME , SchorkNJ. Comprehensive analysis of treatment response phenotypes in rheumatoid arthritis for pharmacogenetic studies. Arthritis Res. Ther.19(1), 90 (2017).
  • Viatte S , PlantD , RaychaudhuriS. Genetics and epigenetics of rheumatoid arthritis. Nat. Rheum. Rev.9(3), 141–153 (2013).
  • Firestein GS . Pathogenesis of rheumatoid arthritis: the intersection of genetics and epigenetics. Trans. Am. Clin. Climatol. Assoc.129, 171–182 (2018).
  • Okada Y , WuD , TrynkaGet al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature506(7488), 376–381 (2014).
  • Yarwood A , HuizingaTWJ , WorthingtonJ. The genetics of rheumatoid arthritis: risk and protection in different stages of the evolution of RA. Rheumatology (Oxford)55(2), 199–209 (2016).
  • Bottini N , FiresteinGS. Epigenetics in rheumatoid arthritis: a primer for rheumatologists. Curr. Rheumatol. Rep.15(11), 372 (2013).
  • Plant D , WebsterA , NairNet al. Differential methylation as a biomarker of response to etanercept in patients with rheumatoid arthritis. Arthritis Rheumatol.68(6), 1353–1360 (2016).
  • Nair N , PlantD , VerstappenSMet al. Differential DNA methylation correlates with response to methotrexate in rheumatoid arthritis. Rheumatology (Oxford).59)6), 1364–1371 (2019).
  • Karouzakis E , GayRE , GayS , NeidhartM. Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat. Rev. Rheumatol.5(5), 266–272 (2009).
  • Karouzakis E , RazaK , KollingCet al. Analysis of early changes in DNA methylation in synovial fibroblasts of RA patients before diagnosis. Sci. Rep.8(7370), doi:10.1038/s41598-018-24240-2 (2018).
  • Ai R , HammakerD , BoyleDLet al. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun.7(1), 1–9 (2016).
  • Araki Y , TsuzukiWada T , AizakiYet al. Histone methylation and STAT-3 differentially regulate interleukin-6-induced matrix metalloproteinase gene activation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol.68(5), 1111–1123 (2016).
  • Hawtree S , MuthanaM , WilkinsonJM , AkilM , WilsonAG. Histone deacetylase 1 regulates tissue destruction in rheumatoid arthritis. Hum. Mol. Genet.24(19), 5367–5377 (2015).
  • Angiolilli C , KabalaPA , GrabiecAMet al. Histone deacetylase 3 regulates the inflammatory gene expression programme of rheumatoid arthritis fibroblast-like synoviocytes. Ann. Rheum. Dis.76(1), 277–285 (2017).
  • Sohn C , LeeA , QiaoY , LoupasakisK , IvashkivLB , KallioliasGD. Prolonged tumor necrosis factor α primes fibroblast-like synoviocytes in a gene-specific manner by altering chromatin. Arthritis Rheumatol.67(1), 86–95 (2015).
  • Lee A , QiaoY , GrigorievGet al. Tumor necrosis factor α Induces sustained signaling and a prolonged and unremitting inflammatory response in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum.65(4), 928–938 (2013).
  • Klein K , KabalaPA , GrabiecAMet al. The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts. Ann. Rheum. Dis.75(2), 422–429 (2016).
  • Glossop JR , EmesRD , NixonNBet al. Genome-wide DNA methylation profiling in rheumatoid arthritis identifies disease-associated methylation changes that are distinct to individual T- and B-lymphocyte populations. Epigenetics9(9), 1228–1237 (2014).
  • de Andres MC , Perez-PampinE , CalazaMet al. Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate. Arthritis Res. Ther.17(1), 233 (2015).
  • Göschl L , PreglejT , BoucheronNet al. Histone deacetylase 1 (HDAC1): a key player of T cell-mediated arthritis. J. Autoimmun.108, 102379 (2020).
  • Grabiec AM , KorchynskyiO , TakPP , ReedquistKA. Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann. Rheum. Dis.71(3), 424–431 (2012).
  • Chen X , BarozziI , TermaniniAet al. Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc. Natl Acad. Sci. USA109(42), E2865 (2012).
  • Klein K , KatoM , Frank-BertonceljMet al. Evaluating the bromodomain protein BRD1 as a therapeutic target in rheumatoid arthritis. Sci. Rep.8(1), 1–7 (2018).
  • Loh C , ParkSH , LeeA , YuanR , IvashkivLB , KallioliasGD. TNF-induced inflammatory genes escape repression in fibroblast-like synoviocytes: transcriptomic and epigenomic analysis. Ann. Rheum. Dis.78(9), 1205–1214 (2019).
  • Ospelt C , GayS. The role of resident synovial cells in destructive arthritis. Best Pract. Res. Clin. Rheumatol.22(2), 239–252 (2008).
  • Lefèvre S , KnedlaA , TennieCet al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med.15(12), 1414–1420 (2009).
  • Lee A , QiaoY , GrigorievGet al. Tumor necrosis factor α Induces sustained signaling and a prolonged and unremitting inflammatory response in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum.65(4), 928–938 (2013).
  • Loupasakis K , KuoD , SokhiUKet al. Tumor necrosis factor dynamically regulates the mRNA stabilome in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol.67(1), 86–95 (2017).
  • The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell. Mol. Biol. Lett.10(4), 631–647 (2005).
  • Liu Y , AryeeMJ , PadyukovLet al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol.31(2), 142–147 (2013).
  • Liu C-C , FangT-J , OuT-Tet al. Global DNA methylation, DNMT1, and MBD2 in patients with rheumatoid arthritis. Immunol. Lett.135(1), 96–99 (2011).
  • Shao X , HudsonM , ColmegnaIet al. Rheumatoid arthritis-relevant DNA methylation changes identified in ACPA-positive asymptomatic individuals using methylome capture sequencing. Clin. Epigenetics11(1), 110 (2019).
  • Pitaksalee R , BurskaAN , AjaibSet al. Differential CpG DNA methylation in peripheral naïve CD4+ T-cells in early rheumatoid arthritis patients. Clin. Epigenetics12(1), 54 (2020).
  • Karouzakis E , GayRE , MichelBA , GayS , NeidhartM. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum.60(12), 3613–3622 (2009).
  • Nakano K , BoyleDL , FiresteinGS. Regulation of DNA methylation in rheumatoid arthritis synoviocytes. J. Immunol.190(3), 1297–1303 (2013).
  • Nakano K , WhitakerJW , BoyleDL , WangW , FiresteinGS. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis.72(1), 110–117 (2013).
  • Ai R , WhitakerJW , BoyleDLet al. DNA methylome signature in early rheumatoid arthritis synoviocytes compared with longstanding rheumatoid arthritis synoviocytes. Arthritis Rheumatol.67(7), 1978–1980 (2015).
  • Frank-Bertoncelj M , TrenkmannM , KleinKet al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun.8(1), 1–14 (2017).
  • Dong X , WengZ. The correlation between histone modifications and gene expression. Epigenomics5(2), 113–116 (2013).
  • Eberharter A , BeckerPB. Histone acetylation: a switch between repressive and permissive chromatin: second in review series on chromatin dynamics. EMBO Rep.3(3), 224 (2002).
  • Wada TT , ArakiY , SatoKet al. Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts. Biochem. Biophys. Res. Commun.444(4), 682–686 (2014).
  • Rengel Y , OspeltC , GayS. Proteinases in the joint: clinical relevance of proteinases in joint destruction. Arthritis. Res. Ther.9(5), 221 (2007).
  • Green MJ , GoughAKS , DevlinJet al. Serum MMP-3 and MMP-1 and progression of joint damage in early rheumatoid arthritis. Rheumatology42(1), 83–88 (2003).
  • Shinozaki M , InoueE , NakajimaAet al. Elevation of serum matrix metalloproteinase-3 as a predictive marker for the long-term disability of rheumatoid arthritis patients in a prospective observational cohort IORRA. Mod. Rheumatol.17(5), 403–408 (2007).
  • Ai R , LaragioneT , HammakerDet al. Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun.9(1921), doi:10.1038/s41467-018-04310-9 (2018).
  • Yap H-Y , TeeS , WongM , ChowS-K , PehS-C , TeowS-Y. Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development. Cells7(10), 161 (2018).
  • Ishida K , KobayashiT , ItoSet al. Interleukin-6 gene promoter methylation in rheumatoid arthritis and chronic periodontitis. J. Periodontol.83(7), 917–925 (2012).
  • Nile CJ , ReadRC , AkilM , DuffGW , WilsonAG. Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum.58(9), 2686–2693 (2008).
  • Clark AD , NairN , AndersonAEet al. Lymphocyte DNA methylation mediates genetic risk at shared immune-mediated disease loci. J. Allergy Clin. Immunol.145, 1438–1451 (2020).
  • Grabiec AM , KrauszS , de JagerWet al. Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. J. Immunol.184(5), 2718–2728 (2010).
  • Gillespie J , SavicS , WongCet al. Histone deacetylases are dysregulated in rheumatoid arthritis and a novel histone deacetylase 3-selective inhibitor reduces interleukin-6 production by peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Rheum.64(2), 418–422 (2012).
  • Li Y , ZhouM , LvXet al. Reduced activity of HDAC3 and increased acetylation of histones H3 in peripheral blood mononuclear cells of patients with rheumatoid arthritis. J. Immunol. Res.2018, 7313515 (2018) doi:https://doi.org/10.1155/2018/7313515.
  • Sever R , GlassCK. Signaling by nuclear receptors. Cold Spring Harb. Perspect. Biol.5(3), doi:10.1101/cshperspect.a016709, a016709 (2013).
  • LeRoy G , RickardsB , FlintSJ. The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol. Cell30(1), 51–60 (2008).
  • Moon KJ , MochizukiK , ZhouM , JeongHS , BradyJN , OzatoK. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell19(4), 523–534 (2005).
  • Tough DF , PrinjhaRK , TakPP. Epigenetic mechanisms and drug discovery in rheumatology. Clin. Med.15(6), S64–S71 (2015).
  • Nicodeme E , JeffreyKL , SchaeferUet al. Suppression of inflammation by a synthetic histone mimic. Nature468(7327), 1119–1123 (2010).
  • Dawson MA , PrinjhaRK , DittmannAet al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature478(7370), 529–533 (2011).
  • Zhang QG , QianJ , ZhuYC. Targeting bromodomain-containing protein 4 (BRD4) benefits rheumatoid arthritis. Immunol. Lett.166(2), 103–108 (2015).
  • Krishna V , YinX , SongQet al. Integration of the transcriptome and genome-wide landscape of BRD2 and BRD4 binding motifs identifies key superenhancer genes and reveals the mechanism of bet inhibitor action in rheumatoid arthritis synovial fibroblasts. J. Immunol.206(2), 422–431 (2021).
  • Houseman EA , MolitorJ , MarsitCJ. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics30(10), 1431–1439 (2014).
  • Andersson R , GebhardC , Miguel-EscaladaIet al. An atlas of active enhancers across human cell types and tissues. Nature507(7493), 455–461 (2014).
  • Hnisz D , AbrahamBJ , LeeTIet al. Super-enhancers in the control of cell identity and disease. Cell155(4), 934–947 (2013).
  • Yamagata K , NakayamadaS , TanakaY. Critical roles of super-enhancers in the pathogenesis of autoimmune diseases. Nat. Rev. Rheum.9(3), 141–153 (2020).
  • Farh KKH , MarsonA , ZhuJet al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature518(7539), 337–343 (2015).
  • Vahedi G , KannoY , FurumotoYet al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature520(7548), 558–562 (2015).
  • Ellis JA , MunroJE , ChavezRAet al. Genome-scale case-control analysis of CD4+ T-cell DNA methylation in juvenile idiopathic arthritis reveals potential targets involved in disease. Clin. Epigenetics4(1), 20 (2012).
  • Leenen FAD , MullerCP , TurnerJDet al. DNA methylation: conducting the orchestra from exposure to phenotype? Clin. Epigenetics 8(1), 92 (2016).
  • Van Dongen J , NivardMG , WillemsenGet al. Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat. Commun.7(11115), doi:10.1038/ncomms11115 (2016).
  • Meng W , ZhuZ , JiangXet al. DNA methylation mediates genotype and smoking interaction in the development of anti-citrullinated peptide antibody-positive rheumatoid arthritis. Arthritis Res. Ther.19(1), 71 (2017).
  • Ince-Askan H , MandaviyaPR , FelixJFet al. Altered DNA methylation in children born to mothers with rheumatoid arthritis during pregnancy. Ann. Rheum. Dis.78(9), 1198–1204 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.