378
Views
0
CrossRef citations to date
0
Altmetric
Review

Induced Pluripotent Stem Cell Technology: Trends in Molecular Biology, from Genetics to Epigenetics

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Pages 631-647 | Received 05 Nov 2020, Accepted 11 Mar 2021, Published online: 07 Apr 2021

References

  • Takahashi K , YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4), 663–676 (2006).
  • Nishikawa S-I , GoldsteinRA , NierrasCRJNRMCB. The promise of human induced pluripotent stem cells for research and therapy. 9(9), 725 (2008).
  • Maali A , AtashiA , GhaffariSet al. A review on leukemia and iPSC technology: application in novel treatment and future. 13(8), 665–675 (2018).
  • Maali A , Ferdosi-ShahandashtiE , AzadM. Drug switching, a creative approach to leukemia therapy. IJBC11(3), 111–112 (2019).
  • Dehghanifard A , KavianiS , AbrounSet al. Various signaling pathways in multiple myeloma cells and effects of treatment on these pathways. Clin. Lymphoma Myeloma Leuk.18(5), 311–320 (2018).
  • Kouchaki R , Abd-NikfarjamB , MaaliAet al. Induced pluripotent stem cell meets severe combined immunodeficiency. Cell J.22(1), 1–10 (2020).
  • Abou-Saleh H , ZoueinFA , El-YazbiAet al. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res. Ther.9(1), 201 (2018).
  • Mahmoodinia Maymand M , Soleimanpour-LichaeiHR , ArdeshirylajimiAet al. Hepatogenic differentiation of human induced pluripotent stem cells on collagen-coated polyethersulfone nanofibers. ASAIO J.63(3), 316–323 (2017).
  • Ardeshirylajimi A , SoleimaniM , HosseinkhaniS , ParivarK , YaghmaeiP. A comparative study of osteogenic differentiation human induced pluripotent stem cells and adipose tissue derived mesenchymal stem cells. Cell Journal (Yakhteh)16(3), 235 (2014).
  • Havasi P , NabioniM , SoleimaniM , BakhshandehB , ParivarK. Mesenchymal stem cells as an appropriate feeder layer for prolonged in vitro culture of human induced pluripotent stem cells. Mol. Biol. Rep.40(4), 3023–3031 (2013).
  • Mitsui K , TokuzawaY , ItohHet al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113(5), 631–642 (2003).
  • Nichols J , ZevnikB , AnastassiadisKet al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell95(3), 379–391 (1998).
  • Kehler J , TolkunovaE , KoschorzBet al. Oct4 is required for primordial germ cell survival. EMBO Rep.5(11), 1078–1083 (2004).
  • Shi G , JinY. Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res. Ther.1(5), 39 (2010).
  • Hochedlinger K , YamadaY , BeardC , JaenischR. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell121(3), 465–477 (2005).
  • Lengner CJ , CamargoFD , HochedlingerKet al. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell1(4), 403–415 (2007).
  • Sardarabadi P , SoleimaniM , AtashiA , BeiranvandSP , RahnamaMA , AnbarlouA. Gene expression analysis of SOX2, NANOG, KLF4, OCT4, and REX1 genes in Cord blood mononuclear cells treated with external stresses. Int. J.Health Stud.2(3), 10–13 (2016).
  • Avilion AA , NicolisSK , PevnyLH , PerezL , VivianN , Lovell-BadgeR. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev.17(1), 126–140 (2003).
  • Ralston A , RossantJ. The genetics of induced pluripotency. Reproduction139(1), 35–44 (2010).
  • Koche RP , SmithZD , AdliMet al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell8(1), 96–105 (2011).
  • Li J , PanG , CuiK , LiuY , XuS , PeiD. A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells. J. Biol. Chem.282(27), 19481–19492 (2007).
  • Kopp JL , OrmsbeeBD , DeslerM , RizzinoA. Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells26(4), 903–911 (2008).
  • Cheng Z , ZouX , JinYet al. The Role of KLF4 in Alzheimer’s disease. Front Cell Neurosci12, 325 (2018).
  • Jiang J , ChanYS , LohYHet al. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol10(3), 353–360 (2008).
  • Li Y , McclintickJ , ZhongL , EdenbergHJ , YoderMC , ChanRJ. Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood105(2), 635–637 (2005).
  • Polo JM , AnderssenE , WalshRMet al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell151(7), 1617–1632 (2012).
  • Nakagawa M , KoyanagiM , TanabeKet al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol.26(1), 101–106 (2008).
  • Davis AC , WimsM , SpottsGD , HannSR , BradleyA. A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev.7(4), 671–682 (1993).
  • Nie Z , HuG , WeiGet al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell151(1), 68–79 (2012).
  • Knoepfler PS , ChengPF , EisenmanRN. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev.16(20), 2699–2712 (2002).
  • Wilson A , MurphyMJ , OskarssonTet al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev.18(22), 2747–2763 (2004).
  • Cartwright P , McleanC , SheppardA , RivettD , JonesK , DaltonS. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development132(5), 885–896 (2005).
  • Knoepfler PS . Why myc? An unexpected ingredient in the stem cell cocktail. Cell Stem Cell2(1), 18–21 (2008).
  • Yu J , VodyanikMA , Smuga-OttoKet al. Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858), 1917–1920 (2007).
  • Chambers I , SilvaJ , ColbyDet al. Nanog safeguards pluripotency and mediates germ-line development. Nature450(7173), 1230–1234 (2007).
  • Takahashi K , TanabeK , OhnukiMet al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5), 861–872 (2007).
  • Boyer LA , LeeTI , ColeMFet al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122(6), 947–956 (2005).
  • Feng B , JiangJ , KrausPet al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat. Cell Biol.11(2), 197–203 (2009).
  • West JA , ViswanathanSR , YabuuchiAet al. A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature460(7257), 909–913 (2009).
  • Judson RL , BabiarzJE , VenereM , BlellochR. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat. Biotechnol.27(5), 459–461 (2009).
  • Rowland BD , BernardsR , PeeperDS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat. Cell Biol.7(11), 1074–1082 (2005).
  • Chakraborty C , RoySS , HsuMJ , AgoramoorthyG. Network analysis of transcription factors for nuclear reprogramming into induced pluripotent stem cell using bioinformatics. Cell J.15(4), 332–339 (2014).
  • Masui S , NakatakeY , ToyookaYet al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol.9(6), 625–635 (2007).
  • Schlaeger TM , DaheronL , BricklerTRet al. A comparison of non-integrating reprogramming methods. Nature Biotechnol.33(1), 58–63 (2015).
  • Cavazzana-Calvo M , Hacein-BeyS , DeSaint Basile Get al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science288(5466), 669–672 (2000).
  • Hacein-Bey-Abina S , Von KalleC , SchmidtMet al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science302(5644), 415–419 (2003).
  • Wolf D , GoffSP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell131(1), 46–57 (2007).
  • Matreyek KA , EngelmanA. Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses5(10), 2483–2511 (2013).
  • Takahashi K , TanabeK , OhnukiMet al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. 131(5), 861–872 (2007).
  • Li L , CleversH. Coexistence of quiescent and active adult stem cells in mammals. Science327(5965), 542–545 (2010).
  • Cronin J , ZhangXY , ReiserJ. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther.5(4), 387–398 (2005).
  • Chen ZY , HeCY , EhrhardtA , KayMA. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol. Ther.8(3), 495–500 (2003).
  • Stadtfeld M , NagayaM , UtikalJ , WeirG , HochedlingerK. Induced pluripotent stem cells generated without viral integration. Science322(5903), 945–949 (2008).
  • Zhou W , FreedCR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells27(11), 2667–2674 (2009).
  • Danthinne X , ImperialeMJ. Production of first generation adenovirus vectors: a review. Gene Ther.7(20), 1707–1714 (2000).
  • Seki T , YuasaS , OdaMet al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell7(1), 11–14 (2010).
  • Ban H , NishishitaN , FusakiNet al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc. Natl Acad. Sci. USA108(34), 14234–14239 (2011).
  • Fusaki N , BanH , NishiyamaA , SaekiK , HasegawaM. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.85(8), 348–362 (2009).
  • Nishimura K , SanoM , OhtakaMet al. Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J. Biol. Chem.286(6), 4760–4771 (2011).
  • Inoue M , TokusumiY , BanHet al. Nontransmissible virus-like particle formation by F-deficient sendai virus is temperature sensitive and reduced by mutations in M and HN proteins. J. Virol.77(5), 3238–3246 (2003).
  • Ohashi N , TamuraA , SakuraiH , YamamotoS. Characterization of a new antigenic type, Kuroki, of Rickettsia tsutsugamushi isolated from a patient in Japan. J. Clin. Microbiol.28(9), 2111–2113 (1990).
  • Hu K . Vectorology and factor delivery in induced pluripotent stem cell reprogramming. Stem Cells Dev.23(12), 1301–1315 (2014).
  • Hu K , YuJ , SuknunthaKet al. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood117(14), e109–119 (2011).
  • Chou BK , MaliP , HuangXet al. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res.21(3), 518–529 (2011).
  • Okita K , MatsumuraY , SatoYet al. A more efficient method to generate integration-free human iPS cells. Nat. Methods8(5), 409–412 (2011).
  • Feschotte C . The piggyBac transposon holds promise for human gene therapy. Proc. Natl Acad. Sci. USA103(41), 14981–14982 (2006).
  • Wang G , YangL , GrishinDet al. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies. Nat. Protoc.12(1), 88–103 (2017).
  • Kaji K , NorrbyK , PacaA , MileikovskyM , MohseniP , WoltjenK. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature458(7239), 771–775 (2009).
  • Woltjen K , MichaelIP , MohseniPet al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature458(7239), 766–770 (2009).
  • Narsinh KH , JiaF , RobbinsRC , KayMA , LongakerMT , WuJC. Generation of adult human induced pluripotent stem cells using non-viral minicircle DNA vectors. Nat. Protoc.6(1), 78–88 (2011).
  • Okita K , NakagawaM , HyenjongH , IchisakaT , YamanakaS. Generation of mouse induced pluripotent stem cells without viral vectors. Science322(5903), 949–953 (2008).
  • Warren L , ManosPD , AhfeldtTet al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell7(5), 618–630 (2010).
  • Quesenberry PJ , AliottaJ , DeregibusMC , CamussiG. Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming. Stem Cell Res. Ther.6, 153 (2015).
  • Zhou H , WuS , JooJYet al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell4(5), 381–384 (2009).
  • Kim D , KimCH , MoonJIet al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell4(6), 472–476 (2009).
  • Malik N , RaoMS. A review of the methods for human iPSC derivation. Methods Mol. Biol.997, 23–33 (2013).
  • Hou P , LiY , ZhangXet al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science341(6146), 651–654 (2013).
  • Kimura T , KagaY , SekitaYet al. Pluripotent stem cells derived from mouse primordial germ cells by small molecule compounds. Stem Cells33(1), 45–55 (2015).
  • Choi J , LeeS , MallardWet al. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nature Biotechnol.33(11), 1173–1181 (2015).
  • Noguchi H , Miyagi-ShiohiraC , NakashimaY. Induced tissue-specific stem cells and epigenetic memory in induced pluripotent stem cells. Int. J. Mol. Sci.19(4), 930-941(2018).
  • Maherali N , AhfeldtT , RigamontiA , UtikalJ , CowanC , HochedlingerK. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell3(3), 340–345 (2008).
  • Aoi T , YaeK , NakagawaMet al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science321(5889), 699–702 (2008).
  • Nazor KL , AltunG , LynchCet al. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem cell10(5), 620–634 (2012).
  • Onder TT , KaraN , CherryAet al. Chromatin-modifying enzymes as modulators of reprogramming. 483(7391), 598 (2012).
  • Mikkelsen TS , HannaJ , ZhangXet al. Dissecting direct reprogramming through integrative genomic analysis. Nature454(7200), 49–55 (2008).
  • Hanna J , SahaK , PandoBet al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature462(7273), 595–601 (2009).
  • Huangfu D , MaehrR , GuoWet al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol.26(7), 795–797 (2008).
  • Shi Y , DespontsC , DoJT , HahmHS , ScholerHR , DingS. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell3(5), 568–574 (2008).
  • Kim K , DoiA , WenBet al. Epigenetic memory in induced pluripotent stem cells. Nature467(7313), 285 (2010).
  • Popp C , DeanW , FengSet al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature463(7284), 1101–1105 (2010).
  • Singhal N , GraumannJ , WuGet al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell141(6), 943–955 (2010).
  • Esteban MA , WangT , QinBet al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell6(1), 71–79 (2010).
  • Liang G , TaranovaO , XiaK , ZhangY. Butyrate promotes induced pluripotent stem cell generation. J. Biol. Chem.285(33), 25516–25521 (2010).
  • Kim K , ZhaoR , DoiAet al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol.29(12), 1117–1119 (2011).
  • Bar-Nur O , RussHA , EfratS , BenvenistyN. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell9(1), 17–23 (2011).
  • Subramanyam D , LamouilleS , JudsonRLet al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol.29(5), 443–448 (2011).
  • Choi YJ , LinCP , HoJJet al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat. Cell Biol.13(11), 1353–1360 (2011).
  • Wang T , ChenK , ZengXet al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. 9(6), 575–587 (2011).
  • Ang Y-S , TsaiS-Y , LeeD-Fet al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. 145(2), 183–197 (2011).
  • Doege CA , InoueK , YamashitaTet al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature488(7413), 652–655 (2012).
  • Onder TT , KaraN , CherryAet al. Chromatin-modifying enzymes as modulators of reprogramming. Nature483(7391), 598–602 (2012).
  • Li MA , HeL. microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. BioEssays34(8), 670–680 (2012).
  • Mansour AA , GafniO , WeinbergerLet al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. 488(7411), 409 (2012).
  • Liang G , HeJ , ZhangYJNCB. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. 14(5), 457 (2012).
  • Costa Y , DingJ , TheunissenTWet al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature495(7441), 370–374 (2013).
  • Gao Y , ChenJ , LiKet al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell12(4), 453–469 (2013).
  • Chen J , LiuH , LiuJet al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat. Genet.45(1), 34–42 (2013).
  • Rais Y , ZviranA , GeulaSet al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature502(7469), 65–70 (2013).
  • Li Z , DangJ , ChangKY , RanaTM. MicroRNA-mediated regulation of extracellular matrix formation modulates somatic cell reprogramming. RNA20(12), 1900–1915 (2014).
  • Zare M , SoleimaniM , AkbarzadehA , BakhshandehB , Aghaee-BakhtiariSH , ZarghamiN. A novel protocol to differentiate induced pluripotent stem cells by neuronal microRNAs to provide a suitable cellular model. Chem. Biol. Drug Des.86(2), 232–238 (2015).
  • Ying SY , FangW , LinSL. The miR-302-mediated induction of pluripotent stem cells (iPSC): multiple synergistic reprogramming mechanisms. Methods Mol. Biol.1733, 283–304 (2018).
  • Liu Q , WangG , LyuYet al. The miR-590/Acvr2a/Terf1 axis regulates telomere elongation and pluripotency of mouse iPSCs. Stem Cell Reports11(1), 88–101 (2018).
  • Nishino K , ToyodaM , Yamazaki-InoueMet al. DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet.7(5), e1002085 (2011).
  • Doi A , ParkIH , WenBet al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet.41(12), 1350–1353 (2009).
  • Kim K , DoiA , WenBet al. Epigenetic memory in induced pluripotent stem cells. Nature467(7313), 285–290 (2010).
  • Kim JB , SebastianoV , WuGet al. Oct4-induced pluripotency in adult neural stem cells. Cell136(3), 411–419 (2009).
  • Maeder ML , StefanidakisM , WilsonCJet al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med.25(2), 229–233 (2019).
  • Gomes KM , CostaIC , SantosJF , DouradoPM , ForniMF , FerreiraJC. Induced pluripotent stem cells reprogramming: epigenetics and applications in the regenerative medicine. Rev. Assoc. Med. Bras. (1992)63(2), 180–189 (2017).
  • Azad M , KavianiS , NoruziniaMet al. Gene expression status and methylation pattern in promoter of P15INK4b and P16INK4a in cord blood CD34 (+) stem cells. Iran J. Basic Med. Sci.16(7), 822–828 (2013).
  • Maroufi F , MaaliA , Abdollahpour-AlitappehM , AhmadiMH , AzadM. CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy. Epigenomics12(20), 1845–1859 (2020).
  • Djuric U , EllisJ. Epigenetics of induced pluripotency, the seven-headed dragon. Stem Cell Res. Ther.1(1), 3 (2010).
  • Wang T , ChenK , ZengXet al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell9(6), 575–587 (2011).
  • Wang Y , BaskervilleS , ShenoyA , BabiarzJE , BaehnerL , BlellochR. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat. Genet.40(12), 1478–1483 (2008).
  • Anokye-Danso F , TrivediCM , JuhrDet al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell8(4), 376–388 (2011).
  • Hu S , WilsonKD , GhoshZet al. MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells31(2), 259–268 (2013).
  • Samavarchi-Tehrani P , GolipourA , DavidLet al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell7(1), 64–77 (2010).
  • Li Z , YangCS , NakashimaK , RanaTM. Small RNA-mediated regulation of iPS cell generation. EMBO J.30(5), 823–834 (2011).
  • Zhong X , LiN , LiangS , HuangQ , CoukosG , ZhangL. Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J. Biol. Chem.285(53), 41961–41971 (2010).
  • Xu Y , ZhangY , García-CañaverasJCet al. Chaperone-mediated autophagy regulates the pluripotency of embryonic stem cells. Science369(6502), 397–403 (2020).
  • Mandai M , WatanabeA , KurimotoYet al. Autologo.us induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med.376(11), 1038–1046 (2017).
  • Kamao H , MandaiM , OkamotoSet al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports2(2), 205–218 (2014).
  • Taapken SM , NislerBS , NewtonMAet al. Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat. Biotechnol.29(4), 313–314 (2011).
  • Mayshar Y , Ben-DavidU , LavonNet al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell7(4), 521–531 (2010).
  • Gore A , LiZ , FungHLet al. Somatic coding mutations in human induced pluripotent stem cells. Nature471(7336), 63–67 (2011).
  • Yoshihara M , HayashizakiY , MurakawaY. Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell Rev. Rep.13(1), 7–16 (2017).
  • Herington E , MccormackS. CADTH rapid response reports. In: Genome-Wide Sequencing for Unexplained Developmental Delays and Multiple Congenital Anomalies: A Rapid Qualitative Review.Canadian Agency for Drugs and Technologies in Health, Ottawa (OTT), Canada (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.