547
Views
0
CrossRef citations to date
0
Altmetric
Review

DNA methylation in chronic obstructive pulmonary disease

ORCID Icon, , &
Pages 1145-1155 | Received 05 Apr 2021, Accepted 03 Jun 2021, Published online: 18 Jun 2021

Reference

  • Shapiro SD , IngenitoEP. The pathogenesis of chronic obstructive pulmonary disease: advances in the past 100 years. Am. J. Respir. Cell Mol. Biol.32(5), 367-372 (2005).
  • Kohansal R , Martinez-CamblorP , AgustiAet al. The natural history of chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort. Am. J. Respir. Crit. Care Med.180(1), 3-10 (2009).
  • Salvi S . Tobacco smoking and environmental risk factors for chronic obstructive pulmonary disease. Clin. Chest Med.35(1), 17-27 (2014).
  • Fang L , GaoP , BaoHet al. Chronic obstructive pulmonary disease in China: a nationwide prevalence study. Lancet Respir. Med.6(6), 421-430 (2018).
  • Davies A , StephenC , ChinweiLet al. Global and regional estimates of COPD prevalence: systematic review and meta-analysis. J. Glob. Health5(2), 020415 (2015).
  • Global Initiative for Chronic Obstructive Lung Disease . Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease report (2021). https://goldcopd.org/2021-gold-reports/
  • Sint T , DonohueJF , GhioAJ. Ambient air pollution particles and the acute exacerbation of chronic obstructive pulmonary disease. Inhal. Toxicol.20(1), 25-29 (2008).
  • Schikowski T , SugiriD , RanftUet al. Long-term air pollution exposure and living close to busy roads. Respir. Res.152 (2015).
  • Moore LD , LeT , FanG. DNA methylation and its basic function. Neuropsychopharmacology38(1), 23-38 (2012).
  • Li T , HeXet al. DNA methyltransferase 1(DNMT1) promotes reactive oxygen substances (ROS)-mediated lung endothelial cell apoptosis in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.197, A1200 (2018).
  • Zinellu A , SotgiuE , FoisAGet al. Blood global DNA methylation is decreased in non-severe chronic obstructive pulmonary disease (COPD) patients. Pulmon. Pharmacol. Ther.11 (2017).
  • Deaton AM , BirdA. CpG islands and the regulation of transcription. Genes Dev.25(10), 1010-1022 (2011).
  • Wu DD , SongJ , BartelS , Krauss-EtschmannS , RotsMG , HylkemaMN. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol Ther182, 1-14 (2018).
  • Unoki M . Recent Insights into the mechanisms of de novo and maintenance of DNA methylation in mammals. In: DNA methylation mechanism. doi:10.5772/intechopen.89238 (2019).
  • Moore LD , LeT , FanG. DNA methylation and its basic function. Neuropsychopharmacology38(1), 23-38 (2012).
  • Rahul , KohliM , Yiet al. TET enzymes, TDG and the dynamics of DNA demethylation. Nature502 (7472), 472-479 (2013).
  • Moen EL , MarianiCJ , ZullowHet al. New themes in the biological functions of 5-methylcytosine and 5-hydroxymethylcytosine. Immunol. Rev.263(1), 36-49 (2015).
  • Krokan HE , BjorasM. Base excision repair. Cold Spring Harbor Perspect. Biol.5(4), a012583 (2013).
  • Gujar H , WeisenbergerD , LiangG. The roles of human DNA methyltransferases and their isoforms in shaping the epigenome. Genes10(2), 172 (2019).
  • Hermann A , GoyalR , JeltschA. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J. Biol. Chem.279(46), 48350-48359 (2004).
  • Vertino PM , SekowskiJA , CollJMet al. DNMT1 is a component of a multiprotein DNA replication complex. Cell Cycle1(6), 416-423 (2002).
  • Norvil AB , PetellCJ , AlabdiLet al. Dnmt3b methylates DNA by a noncooperative mechanism, and its activity is unaffected by manipulations at the predicted dimer interface. Biochemistry57(29), 4312-4324 (2016).
  • Yang IV , SchwartzDA. Epigenetic control of gene expression in the lung. Am. J. Respir. Crit. Care Med.183, 1295-1301 (2011).
  • Wong TS , GaoW , LiZH , ChanJY , HoWK. Epigenetic dysregulation in laryngeal squamous cell carcinoma. J. Oncol.2012, 739461 (2012).
  • Leclercq B , PlatelA , AntherieuSet al. Genetic and epigenetic alterations in normal and sensitive COPD-diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM2.5. Environ. Pollut.230, 163-177 (2017).
  • Vucic EA , ChariR , ThuKLet al. DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways. Am. J. Respir. Cell Mol. Biol.50(5), 912-922 (2014).
  • Brock MV , HookerCM , Ota-MachidaEet al. DNA methylation markers and early recurrence in stage I lung cancer. New England Journal of Medicine358(11), 1118-1128 (2008).
  • Luo J , YingY , ZhangHet al. Down-regulation of promoter methylation level of CD4 gene after MDV infection in MD-susceptible chicken line. BMC Proceedings5(Suppl. 4), 5 (2011).
  • Suzuki M , WadaH , YoshinoMet al. Molecular characterization of chronic obstructive pulmonary disease-related non-small cell lung cancer through aberrant methylation and alterations of EGFR signaling. Ann. Surg. Oncol.17(3), 878-888 (2010).
  • Zhang N , LiuK , WangKet al. Dust induces lung fibrosis through dysregulated DNA methylation. Environ. Toxicol.34(6), 728-741 (2019).
  • Sundar IK , RahmanI. Gene expression profiling of epigenetic chromatin modification enzymes and histone marks by cigarette smoke: implications for COPD and lung cancer. Am. J. Physiol. Lung Cell Mol. Physiol.311(6), L1245-L1258 (2016).
  • Liu F , KillianJK , YangMet al. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene29(25), 3650-3664 (2010).
  • Busch R , QiuW , Lasky-SuJ , MorrowJ , CrinerG , DeMeoD. Differential DNA methylation marks and gene comethylation of COPD in African-Americans with COPD exacerbations. Respir. Res.17(1), 143 (2016).
  • Bergougnoux A , ClaustresM , DeSario A. Nasal epithelial cells: a tool to study DNA methylation in airway diseases. Epigenomics7(1), 119-126 (2015).
  • Yoo S , TakikawaS , GeraghtyPet al. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD. PLoS Genet.11(1), e1004898 (2015).
  • Sun YV , SmithAK , ConneelyKNet al. Epigenomic association analysis identifies smoking-related DNA methylation sites in African Americans. Hum. Genet.132(9), 1027-1037 (2013).
  • Monick MM , BeachSR , PlumeJet al. Coordinated changes in AHRR methylation in lymphoblasts and pulmonary macrophages from smokers. Am. J. Med. Genet. B Neuropsychiatr. Genet.159B(2), 141-151 (2012).
  • Tsaprouni LG , YangTP , BellJet al. Cigarette smoking reduces DNA methylation levels at multiple genomic loci but the effect is partially reversible upon cessation. Epigenetics9(10), 1382-1396 (2014).
  • Cho MH , BoutaouiN , KlandermanBJet al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat. Genet.42(3), 200-202 (2010).
  • Pillai SG , GeD , ZhuGet al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet.5(3), e1000421 (2009).
  • Sundar IK , YinQ , BaierBSet al. DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD. Clin. Epigenetics9, 38 (2017).
  • Soria JC , RodriguezM , LiuDD , LeeJJ , HongWK , MaoL. Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Res.62(2), 351-355 (2002).
  • Sood A , PetersenH , BlanchetteCMet al. Wood smoke exposure and gene promoter methylation are associated with increased risk for COPD in smokers. Am. J. Respir. Crit. Care Med.182(9), 1098-1104 (2010).
  • Meek PM , SoodA , PetersenH , BelinskySA , TesfaigziY. Epigenetic change (GATA-4 gene methylation) is associated with health status in chronic obstructive pulmonary disease. Biol. Res. Nurs.17(2), 191-198 (2015).
  • Guzman L , DepixMS , SalinasAMet al. Analysis of aberrant methylation on promoter sequences of tumor suppressor genes and total DNA in sputum samples: a promising tool for early detection of COPD and lung cancer in smokers. Diagn. Pathol.7, 87 (2012).
  • Peifer M , Fernandez-CuestaL , SosML , GeorgeJ , SeidelDet al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet.44, 1104-1110 (2012).
  • Stankiewicz P , SenP , BhattSS , StorerM , XiaZet al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am. J. Hum. Genet.84, 780-791 (2009).
  • Yang F , TangX , RiquelmeE , BehrensC , NilssonMBet al. Increased VEGFR-2 gene copy is associated with chemoresistance and shorter survival in patients with non-small-cell lung carcinoma who receive adjuvant chemotherapy. Cancer Res.71, 5512-5521 (2011).
  • Kaur G , BegumR , ThotaS , BatraS. A systematic review of smoking-related epigenetic alterations. Arch. Toxicol.93(10), 2715-2740 (2019).
  • Wan ES , QiuW , BaccarelliAet al. Systemic steroid exposure is associated with differential methylation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.186(12), 1248-1255 (2012).
  • Wu X , SunX , ChenC , BaiC , WangX. Dynamic gene expressions of peripheral blood mononuclear cells in patients with acute exacerbation of chronic obstructive pulmonary disease: a preliminary study. Crit. Care18(6), 508 (2014).
  • Qiu W , BaccarelliA , CareyVJet al. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am. J. Respir. Crit. Care Med.185(4), 373-381 (2012).
  • Francis SM , LarsenJE , PaveySJet al. Expression profiling identifies genes involved in emphysema severity. Respir. Res.10, 81 (2009).
  • Morrow JD , GlassK , ChoMHet al. Human Lung DNA methylation quantitative trait loci colocalize with chronic obstructive pulmonary disease genome-wide association loci. Am. J. Respir. Crit. Care Med.197(10), 1275-1284 (2018).
  • Wijkstrom-Frei C , El-ChemalyS , Ali-RachediRet al. Lactoperoxidase and human airway host defense. Am. J. Respir. Cell Mol. Biol.29(2), 206-212 (2003).
  • Jin N , KolliputiN , GouD , WengT , LiuL. A novel function of ionotropic gamma-aminobutyric acid receptors involving alveolar fluid homeostasis. J. Biol. Chem.281(47), 36012-36020 (2006).
  • Rowan-Carroll A , HalappanavarS , WilliamsA , SomersCM , YaukCL. Mice exposed in situ to urban air pollution exhibit pulmonary alterations in gene expression in the lipid droplet synthesis pathways. Environ. Mol. Mutagen.54(4), 240-249 (2013).
  • Clifford RL , FishbaneN , PatelJet al. Altered DNA methylation is associated with aberrant gene expression in parenchymal but not airway fibroblasts isolated from individuals with COPD. Clin. Epigenetics10, 32 (2018).
  • Steegers-Theunissen RP , Obermann-BorstSA , KremerDet al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS ONE4(11), e7845 (2009).
  • Turner SW , CampbellD , SmithNet al. Associations between fetal size, maternal {alpha}-tocopherol and childhood asthma. Thorax65(5), 391-397 (2010).
  • Gao L , ChengD , YangJ , WuR , LiW , KongA-N. Sulforaphane epigenetically demethylates the CpG sites of the miR-9-3 promoter and reactivates miR-9-3 expression in human lung cancer A549 cells. J. Nutr. Biochem.56, 109-115 (2018).
  • Daniel Hoestereya , NilakashDas , WimJanssenset al. Spirometric indices of early airflow impairment in individuals at risk of developing COPD: spirometry beyond FEV1/FVC. Respir. Med.156, 58-68 (2019).
  • Machin M , AndréF , AmaralS. Matthias WielscherSystematic review of lung function and COPD with peripheral blood DNA methylation in population based studies. BMC Pulmon. Med.17(1), 54 (2017).
  • Faner R , Tal-SingerR , RileyJHet al. Lessons from ECLIPSE: a review of COPD biomarkers. Thorax69(7), 666 (2013).
  • Mathur S , SuttonJ. Personalized medicine could transform healthcare (Review). Biomed. Rep.7(1), doi:10.3892/br.2017.922 (2017).
  • Chen CC , WangKY , ShenCK. The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J. Biol. Chem.287(40), 33116-33121 (2012).
  • van der Wijst MGP , VenkiteswaranM , ChenH , XuGL , PloschT , RotsMG. Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. Epigenetics10(8), 671-676 (2015).
  • Zhao H , ChenT. Tet family of 5-methylcytosine dioxygenases in mammalian development. J. Hum. Genet.58(7), 421-427 (2013).
  • Wu X , ZhangY. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet.18(9), 517-534 (2017).
  • Hsu PD , LanderES , ZhangF. Development and applications of CRISPR-Cas9 for genome engineering. Cell157, 1262-1278 (2014).
  • Shenker NS , UelandPM , PolidoroSet al. DNA methylation as a long-term biomarker of exposure to tobacco smoke. Epidemiology24(5), 712-716 (2013).
  • Neveu WA , MillsST , StaitiehBS , SueblinvongV. TGF-beta1 epigenetically modifies Thy-1 expression in primary lung fibroblasts. Am. J. Physiol. Cell Physiol.309(9), C616-626 (2015).
  • Leermakers PA , GoskerHR. Skeletal muscle mitophagy in chronic disease: implications for muscle oxidative capacity?Curr. Opin. Clin. Nutr. Metab. Care19(6), 427-433 (2016).
  • Shih CC , HiiHP , TsaoCMet al. Therapeutic effects of procainamide on endotoxin-induced rhabdomyolysis in rats. PLoS ONE11(2), e0150319 (2016).
  • Kolsum U , DameraG , PhamT-Het al. Pulmonary inflammation in patients with chronic obstructive pulmonary disease with higher blood eosinophil counts. J.Allergy Clin. Immunol.140(4), 1181-1184.e7 (2017).
  • Barnes PJ . Reduced histone deacetylase in COPD - clinical implications. Chest129(1), 151-155 (2006).
  • Barnes PJ , AdcockIM , ItoK. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur. Respir. J.25(3), 552-563 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.