182
Views
0
CrossRef citations to date
0
Altmetric
Review

MiRNA-148b and Its Role in Various Cancers

, , , ORCID Icon, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 1939-1960 | Received 03 May 2021, Accepted 04 Nov 2021, Published online: 02 Dec 2021

References

  • Yu W , LiangX , LiX , ZhangYet al. MicroRNA-195: a review of its role in cancers. Onco. Targets Ther.11, 7109 (2018).
  • Song Y , SunJ , XuYet al. Microarray analysis of long non-coding RNAs related to microRNA-148b in gastric cancer. Neoplasma64(2), 199–208 (2017).
  • Hashemipour M , BoroumandH , MollazadehSet al. Exosomal microRNAs and exosomal long non-coding RNAs in gynecologic cancers. Gynecol. Oncol.161(1), 314–327 (2021).
  • Hosseinzadeh E , RavanH , MohammadiA , PourghadamyariH. Colorimetric detection of miRNA-21 by DNAzyme-coupled branched DNA constructs. Talanta.216, 120913 (2020).
  • Mardani R , JafariNajaf Abadi MH , MotieianMet al. MicroRNA in leukemia: tumor suppressors and oncogenes with prognostic potential. J. Cell. Physiol.234(6), 8465–8486 (2019).
  • Khani P , NasriF , KhaniChamani Fet al. Genetic and epigenetic contribution to astrocytic gliomas pathogenesis. J. Neurochem.148(2), 188–203 (2019).
  • Shabaninejad Z , YousefiF , MovahedpourAet al. Electrochemical-based biosensors for microRNA detection: nanotechnology comes into view. Anal. Biochem.581, 113349 (2019).
  • Sharma V , MisteliT. Non-coding RNAs in DNA damage and repair. FEBS. Lett.587(13), 1832–1839 (2013).
  • Lee RC , FeinbaumRL , AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75(5), 843–854 (1993).
  • Si W , ShenJ , ZhengH , FanW. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin. Epigenetics11(1), 1–24 (2019).
  • Broderick JA , ZamorePD. MicroRNA therapeutics. Gene. Ther.18(12), 1104–1110 (2011).
  • Collino F , BrunoS , DeregibusMCet al. MicroRNAs and mesenchymal stem cells. Vitam. Horm.87, 291–320 (2011).
  • Taipaleenmäki H , HoklandLB , ChenLet al. Micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur. J. Endocrinol.166(3), 359–371 (2012).
  • Kapinas K , DelanyAM. MicroRNA biogenesis and regulation of bone remodeling. Arthritis. Res. Ther.13(3), 1–11 (2011).
  • Chen Y , SongYX , WangZN. The microRNA-148/152 family: multi-faceted players. Mol. Cancer.12(1), 1–8 (2013).
  • Hébert SS , DeStrooper B. Alterations of the microRNA network cause neurodegenerative disease. Trends. Neurosci.32(4), 199–206 (2009).
  • Lin W , WangL , YangSet al. Analysis of miR-148b expression differences in stage-I and II parosteal osteosarcoma. Oncol. Lett.16(1), 998–1002 (2018).
  • Okugawa Y , GradyWM , GoelA. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology149(5), 1204–1225e12 (2015).
  • Melo SA , EstellerM. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett.585(13), 2087–2099 (2011).
  • Aure MR , LeivonenSK , FleischerTet al. Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol.14(11), R126 (2013).
  • Chen Y , SongYX , WangZN. The microRNA-148/152 family: multi-faceted players. Mol. Cancer.12(1), 43 (2013).
  • Srivastava D , DewittN. In vivo cellular reprogramming: the next generation. Cell166(6), 1386–1396 (2016).
  • Zhang Z , ZhengW , HaiJ. MicroRNA-148b expression is decreased in hepatocellular carcinoma and associated with prognosis. Med. Oncol.31(6), 984 (2014).
  • Xu P , DuongDM , SeyfriedNTet al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell137(1), 133–145 (2009).
  • Lu J , GetzG , MiskaEAet al. MicroRNA expression profiles classify human cancers. Nature435(7043), 834–838 (2005).
  • Kelly GL , StrasserA. Toward targeting antiapoptotic MCL-1 for cancer therapy. Annu. Rev. Cancer Biol.4, 299–313 (2020).
  • Ge H , LiB , HuWXet al. MicroRNA-148b is down-regulated in non-small cell lung cancer and associated with poor survival. Int. J. Clin. Exp. Pathol.8, 800–805 (2015).
  • Song YX , YueZY , WangZNet al. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol. Cancer.10(1), 1 (2011).
  • Li X , JiangM , ChenDet al. miR-148b-3p inhibits gastric cancer metastasis by inhibiting the Dock6/Rac1/Cdc42 axis. J. Exp. Clin. Cancer Res.37(1), 71 (2018).
  • Ding X , LiuJ , LiuTet al. miR-148b inhibits glycolysis in gastric cancer through targeting SLC2A1. Cancer. Med.6(6), 1301–1310 (2017).
  • Zhang JG , ShiY , HongDFet al. MiR-148b suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/β-catenin pathway. Sci. Rep.5, 8087 (2015).
  • Liu Q , XuY , WeiSet al. miRNA-148b suppresses hepatic cancer stem cell by targeting neuropilin-1. Biosci. Rep.35(4), (2015).
  • Ke M , ZhangZ , CongLet al. MicroRNA-148b-colony-stimulating factor-1 signaling-induced tumor-associated macrophage infiltration promotes hepatocellular carcinoma metastasis. Biomed. Pharmacother.120, 109523 (2019).
  • Chen X , BoL , LuWet al. MicroRNA-148b targets Rho-associated protein kinase 1 to inhibit cell proliferation, migration and invasion in hepatocellular carcinoma. Mol. Med. Rep.13(1), 477–482 (2015).
  • Zhao G , ZhangJG , LiuYet al. miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1. Mol. Cancer. Ther.12(1), 83–93 (2013).
  • Azizi M , Teimoori-ToolabiL , ArzananiMKet al. MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biol. Ther.15(4), 419–427 (2014).
  • Chang H , ZhouX , WangZNet al. Increased expression of miR-148b in ovarian carcinoma and its clinical significance. Mol. Med. Rep.5(5), 1277–1280 (2012).
  • Mou Z , XuX , DongM , XuJ. MicroRNA-148b acts as a tumor suppressor in cervical cancer by inducing G1/S-phase cell cycle arrest and apoptosis in a caspase-3-dependent manner. Med. Sci. Monit.22, 2809 (2016).
  • Luo H , LiangC. MicroRNA-148b inhibits proliferation and the epithelial-mesenchymal transition and increases radiosensitivity in non-small cell lung carcinomas by regulating ROCK1. Exp. Ther. Med.15(4), 3609–3616 (2018).
  • Kümper S , MardakhehFK , MccarthyAet al. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. Elife.5, e12203 (2016).
  • Jiang Z , ZhangJ , ChenF , SunY. MiR-148b suppressed non-small cell lung cancer progression via inhibiting ALCAM through the NF-κB signaling pathway. Thorac. Cancer.11(2), 415–425 (2020).
  • Dhanasekaran DN , ReddyEP. JNK-signaling: a multiplexing hub in programmed cell death. Genes Cancer8(9–10), 682 (2017).
  • Chen X , WangY-W , GaoP. SPIN1, negatively regulated by miR-148/152, enhances Adriamycin resistance via upregulating drug metabolizing enzymes and transporter in breast cancer. J. Exp. Clin. Cancer. Res.37(1), 1–12 (2018).
  • Sandhu R , RivenbarkAG , ColemanWB. Loss of post-transcriptional regulation of DNMT3b by microRNAs: a possible molecular mechanism for the hypermethylation defect observed in a subset of breast cancer cell lines. Int. J. Oncol.41(2), 721–732 (2012).
  • Yuan L , LiuY , QuYet al. Exosomes derived from microrna-148b-3p-overexpressing human umbilical cord mesenchymal stem cells restrain breast cancer progression. Front. Oncol.9, 1076 (2019).
  • Orso F , QuiricoL , VirgaFet al. miR-214 and miR-148b targeting inhibits dissemination of melanoma and breast cancer. Cancer Res.76(17), 5151–5162 (2016).
  • Cimino D , DePitta C , OrsoFet al. miR148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. FASEB J.27(3), 1223–1235 (2013).
  • Zhang H , YeQ , DuZet al. MiR-148b-3p inhibits renal carcinoma cell growth and pro-angiogenic phenotype of endothelial cell potentially by modulating FGF2. Biomed. Pharmacother.107, 359–367 (2018).
  • Nie F , LiuT , ZhongLet al. MicroRNA-148b enhances proliferation and apoptosis in human renal cancer cells via directly targeting MAP3K9. Mol. Med. Rep.13(1), 83–90 (2015).
  • Wu M , YeX , WangSet al. MicroRNA-148b suppresses proliferation, migration, and invasion of nasopharyngeal carcinoma cells by targeting metastasis-associated gene 2. Onco. Targets Ther.10, 2815 (2017).
  • Qu J , ZhangL , LiL , SuY. MiR-148b functions as a tumor suppressor by targeting endoplasmic reticulum metallo protease 1 in human endometrial cancer cells. Oncol. Res.27(1), 81–88 (2018).
  • Li BL , LuW , QuJJet al. Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J. Cell. Physiol.234(3), 2943–2953 (2019).
  • Wang G , LiZ , TianNet al. miR-148b-3p inhibits malignant biological behaviors of human glioma cells induced by high HOTAIR expression. Oncol. Lett.12(2), 879–886 (2016).
  • Liu SH , WangPP , Cun-TeChen DLet al. MicroRNA-148b enhances the radiosensitivity of B-cell lymphoma cells by targeting Bcl-w to promote apoptosis. Int. J. Biol. Sci.16(6), 935 (2020).
  • Sun N , WangCY , Sun-Qet al. Down-regulated miR-148b increases resistance to CHOP in diffuse large B-cell lymphoma cells by rescuing Ezrin. Biomed. Pharmacother.106, 267–274 (2018).
  • Wu Y , LiuGL , LiuSHet al. MicroRNA-148b enhances the radiosensitivity of non-Hodgkin’s Lymphoma cells by promoting radiation-induced apoptosis. J. Radiat. Res.53(4), 516–525 (2012).
  • Sánchez-Espiridión B , Martín-MorenoAM , MontalbánCet al. Micro RNA signatures and treatment response in patients with advanced classical Hodgkin lymphoma. Br. J. Haematol.162(3), 336–347 (2013).
  • Penna E , OrsoF , CiminoDet al. miR-214 coordinates melanoma progression by upregulating ALCAM through TFAP2 and miR-148b downmodulation. Cancer Res.73(13), 4098–4111 (2013).
  • Balogh J , VictorD III , AshamEHet al. Hepatocellular carcinoma: a review. J. Hepatocell. Carcinoma3, 41 (2016).
  • Xu Y , LiL , XiangXet al. Three common functional polymorphisms in microRNA encoding genes in the susceptibility to hepatocellular carcinoma: a systematic review and meta-analysis. Gene527(2), 584–593 (2013).
  • Zhao Y , JiaH , ZhouHet al. Identification of metastasis-related microRNAs of hepatocellular carcinoma in hepatocellular carcinoma cell lines by quantitative real time PCR. Zhongguo Shi Yan Xue Ye Xue Za Zhi17(7), 526–530 (2009).
  • Rath N , OlsonMF. Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep.13(10), 900–908 (2012).
  • Ma W , WongCCL , TungEKKet al. RhoE is frequently down-regulated in hepatocellular carcinoma (HCC) and suppresses HCC invasion through antagonizing the Rho/Rho-Kinase/Myosin phosphatase target pathway. Hepatology57(1), 152–161 (2013).
  • Lin Y , XuJ , LanH. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol.12(1), 76 (2019).
  • Salmaninejad A , ValilouSF , SoltaniAet al. Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell Oncol.42(5), 591–608 (2019).
  • Song Y , XuY , WangZet al. MicroRNA-148b suppresses cell growth by targeting cholecystokinin-2 receptor in colorectal cancer. IJC131(5), 1042–1051 (2012).
  • Jin G , RamanathanV , QuanteMet al. Inactivating cholecystokinin-2 receptor inhibits progastrin-dependent colonic crypt fission, proliferation, and colorectal cancer in mice. J. Clin. Invest.119(9), 2691–2701 (2009).
  • Roy J , PuttKS , CoppolaDet al. Assessment of cholecystokinin 2 receptor (CCK2R) in neoplastic tissue. Oncotarget.7(12), 14605 (2016).
  • Bray F , FerlayJ , SoerjomataramIet al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin.68(6), 394–424 (2018).
  • Mojtahedi A , SalehiR , NavabakbarFet al. Evaluation of apoptosis induction using PARP cleavage on gastric adenocarcinoma and fibroblast cell lines by different strains of Helicobacter pylori. PJBS10(22), 4097–4102 (2007).
  • Jernal A , SiegelR , WardEet al. Cancer statistics, 2002. CA Cancer J. Clin.52(1), 23–47 (2002).
  • Li J , QinS , XuJet al. Apatinib for chemotherapy-refractory advanced metastatic gastric cancer: results from a randomized, placebo-controlled, parallel-arm, phase II trial. J. Clin. Oncol.31(26), 3219–3225 (2013).
  • Bläker M , ArrenbergP , StangeIet al. The cholecystokinin2-receptor mediates calcitonin secretion, gene expression, and proliferation in the human medullary thyroid carcinoma cell line, TT. Regul. Pept.118(1–2), 111–117 (2004).
  • Cuq P , GrossA , TerrazaAet al. mRNAs encoding CCKB but not CCKA receptors are expressed in human T lymphocytes and Jurkat lymphoblastoid cells. Life Sci.61(5), 543–555 (1997).
  • Moghimi-Dehkordi B , SafaeeA , GhiasiS , ZaliM. Survival in gastric cancer patients: univariate and multivariate analysis. East. Afr. J. Public. Health. (2009).
  • Boyle P , FerlayJ. Cancer incidence and mortality in Europe, 2004. Annals. Oncol.16(3), 481–488 (2005).
  • Rawla P , SunkaraT , BarsoukA. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Przegląd. Gastroenterol.14(2), 89 (2019).
  • Jochem C , LeitzmannM. Obesity and colorectal cancer. In: Obesity and Cancer.KumarS, GuptaS ( Eds). Springer, Singapore, 17–41 (2016).
  • Tsoi KK , PauCY , WuWKet al. Cigarette smoking and the risk of colorectal cancer: a meta-analysis of prospective cohort studies. Clin. Gastroenterol. Hepatol.7(6), 682–688e5 (2009).
  • Lin TC , ChienWC , HuJMet al. Risk of colorectal cancer in patients with alcoholism: a nationwide, population-based nested case–control study. PLoS ONE15(5), e0232740 (2020).
  • Mohammadi A , MansooriB , BaradaranB. The role of microRNAs in colorectal cancer. Biomed. Pharmacother.84, 705–713 (2016).
  • Huang Z , HuangD , NiSet al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int. J. Cancer.127(1), 118–126 (2010).
  • Wang S , WangL , ZhuTet al. Improvement of tissue preparation for laser capture microdissection: application for cell type-specific miRNA expression profiling in colorectal tumors. BMC. genom.11(1), 163 (2010).
  • Hu J , XiaX , ChengAet al. A peptide inhibitor derived from p55PIK phosphatidylinositol 3-kinase regulatory subunit: a novel cancer therapy. Mol. Cancer. Ther.7(12), 3719–3728 (2008).
  • Wang G , CaoX , LaiSet al. Altered p53 regulation of miR-148b and p55PIK contributes to tumor progression in colorectal cancer. Oncogene.34(7), 912–921 (2015).
  • Wu Z , YuanQ , YangCet al. Downregulation of oncogenic gene TGFβR2 by miRNA-107 suppresses non-small cell lung cancer. Pathol. Res. Pract.216(1), 152690 (2020).
  • Lu L , LiuQ , WangPet al. MicroRNA-148b regulates tumor growth of non-small cell lung cancer through targeting MAPK/JNK pathway. BMC. Cancer19(1), 209 (2019).
  • Yousefi M , BahramiT , SalmaninejadAet al. Lung cancer-associated brain metastasis: molecular mechanisms and therapeutic options. Cellular. Oncol.40(5), 419–441 (2017).
  • Yang J , LiuH , WangH , SunY. Down-regulation of microRNA-181b is a potential prognostic marker of non-small cell lung cancer. Pathol. Res. Pract.209(8), 490–494 (2013).
  • Wang R , YeF , ZhenQet al. MicroRNA-148b is a potential prognostic biomarker and predictor of response to radiotherapy in non-small-cell lung cancer. J. Physiol. Biochem.72(2), 337–343 (2016).
  • Kuan-Li W , TsaiYM , LienCTet al. The roles of microRNA in lung cancer. Int. J. Mol. Sci.20(7), (2019).
  • Yousefi M , GhaffariP , NosratiRet al. Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer. Cellular. Oncol.43(1), 31–49 (2020).
  • Huang MX . Down-expression of circulating micro ribonucleic acid (miRNA)-148/152 family in plasma samples of non-small cell lung cancer patients. J. Cancer Res. Ther.12(2), 671 (2016).
  • Liu GL , LiuX , LvXBet al. miR-148b functions as a tumor suppressor in non-small cell lung cancer by targeting carcinoembryonic antigen (CEA). Int. J. Clin. Exp. Med.7(8), 1990 (2014).
  • Ge H , LiB , HuWXet al. MicroRNA-148b is down-regulated in non-small cell lung cancer and associated with poor survival. Int. J. Clin. Exp. Pathol.8(1), 800 (2015).
  • Huang Z , ShaoleiL , YuanyuanMet al. Expression of miR-148b-3p in lung adenocarcinoma and its correlation with prognosis. Zhongguo Fei Ai Za Zhi22(5), (2019).
  • Sui C , MengF , LiY , JiangY. miR-148b reverses cisplatin-resistance in non-small cell cancer cells via negatively regulating DNA (cytosine-5)-methyltransferase 1 (DNMT1) expression. J. Trans. Med.13(1), 1–9 (2015).
  • Kharbanda A , RajabiH , JinC , AlamMet al. MUC1-C confers EMT and KRAS independence in mutant KRAS lung cancer cells. Oncotarget.5(19), 8893 (2014).
  • Schmalhofer O , BrabletzS , BrabletzT. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev.28(1–2), 151–166 (2009).
  • Vigil D , KimTY , PlachcoAet al. ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion. Cancer Res.72(20), 5338–5347 (2012).
  • Jaeschke A , DavisRJ. Metabolic stress signaling mediated by mixed-lineage kinases. Mol. Cell.27(3), 498–508 (2007).
  • Momenimovahed Z , SalehiniyaH. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer11, 151 (2019).
  • Sandhu R , RivenbarkAG , MacklerRMet al. Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer. Int. J. Oncol.44(2), 563–572 (2014).
  • Cuk K , ZucknickM , HeilJRet al. Circulating microRNAs in plasma as early detection markers for breast cancer. Int. J. Cancer.132(7), 1602–1612 (2013).
  • Shen J , HuQ , SchrauderMet al. Circulating miR-148b and miR-133a as biomarkers for breast cancer detection. Oncotarget.5(14), 5284 (2014).
  • Dai W , HeJ , ZhengLet al. miR-148b-3p, miR-190b, and miR-429 regulate cell progression and act as potential biomarkers for breast cancer. J. Breast Cancer22(2), 219–236 (2019).
  • Quirico L , OrsoF , EspositoCLet al. Axl-148b chimeric aptamers inhibit breast cancer and melanoma progression. Int. J. Biol. Sci.16(7), 1238 (2020).
  • Ferreira LC , OrsoF , DettoriDet al. The role of melatonin on miRNAs modulation in triple-negative breast cancer cells. PLoS ONE15(2), e0228062 (2020).
  • Bindra BS , KaurH , PortilloSet al. B-cell prolymphocytic leukemia: case report and challenges on a diagnostic and therapeutic forefront. Cureus11(9), (2019).
  • Wang H , LiuJ , XiaGet al. Survival of pancreatic cancer patients is negatively correlated with age at diagnosis: a population-based retrospective study. Sci. Rep.10(1), 1–9 (2020).
  • Huang BZ , StramDO , LeMarchand Let al. Interethnic differences in pancreatic cancer incidence and risk factors: the Multiethnic Cohort. Cancer. Med.8(7), 3592–3603 (2019).
  • Andersson G , WennerstenC , BorgquistS , JirströmK. Pancreatic cancer risk in relation to sex, lifestyle factors, and pre-diagnostic anthropometry in the Malmö Diet and Cancer Study. Biol. Sex Differ.7(1), 1–11 (2016).
  • Nie F , LiuT , ZhongLet al. MicroRNA-148b enhances proliferation and apoptosis in human renal cancer cells via directly targeting MAP3K9. Mol. Med. Rep.13(1), 83–90 (2016).
  • Klein AP . Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol.1–10 (2021).
  • Andersson G , WennerstenC , BorgquistS , JirströmK. Pancreatic cancer risk in relation to sex, lifestyle factors, and pre-diagnostic anthropometry in the Malmö Diet and Cancer Study. Biol. Sex Differ.7(1), 66 (2016).
  • Gupta S , WangF , HollyEA , BracciPM. Risk of pancreatic cancer by alcohol dose, duration, and pattern of consumption, including binge drinking: a population-based study. Cancer. Causes. Control21(7), 1047–1059 (2010).
  • Bracci PM . Obesity and pancreatic cancer: overview of epidemiologic evidence and biologic mechanisms. Mol. Carcinogene.51(1), 53–63 (2012).
  • Li D . Diabetes and pancreatic cancer. Mol. Carcinogene.51(1), 64–74 (2012).
  • Goggins M , OverbeekKA , BrandRet al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut.69(1), 7–17 (2020).
  • Bloomston M , FrankelWL , PetroccaFet al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA297(17), 1901–1908 (2007).
  • Cant C , Gerhart-HinesZ , FeigeJNet al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature458(7241), 1056–1060 (2009).
  • Kim EK , ParkJM , LimSet al. Activation of AMP-activated protein kinase is essential for lysophosphatidic acid-induced cell migration in ovarian cancer cells. J. Biol. Chem.286(27), 24036–24045 (2011).
  • Wang Z , CaiH , LinLet al. Upregulated expression of microRNA-214 is linked to tumor progression and adverse prognosis in pediatric osteosarcoma. Pediatr. Blood Cancer61(2), 206–210 (2014).
  • Schneider T , MawrinC , ScherlachCet al. Gliomas in adults. Deutsches. Ärzteblatt. Int.107(45), 799 (2010).
  • Chernov AN , AlaverdianDA , GalimovaESet al. The phenomenon of multidrug resistance in glioblastomas. Hematol. Oncol. Stem. Cell. Ther. (2021).
  • Ghafouri-Fard S , EsmaeiliM , TaheriM. H19 lncRNA: roles in tumorigenesis. Biomed. Pharmacother.123, 109774 (2020).
  • Barsyte-Lovejoy D , LauSK , BoutrosPCet al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res.66(10), 5330–5337 (2006).
  • Hajjari M , SalavatyA. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol. Med.12(1), 1 (2015).
  • Gupta RA , ShahN , WangKCet al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature464(7291), 1071–1076 (2010).
  • Louis D , OhgaIH , WiestlerODet al. The 2007 WHO classification of tumours of the central nervous system. Acta. Neuropathol.114, 97–109 (2007).
  • Khazaei Z , DehkordiAH , AmiriMet al. The incidence and mortality of endometrial cancer and its association with body mass index and human development index in Asian population. World Cancer Res. J.5, e1174 (2018).
  • Nahand JS , VandchaliNR , DarabiHet al. Exosomal microRNAs: novel players in cervical cancer. Epigenomics12(18), 1651–1660 (2020).
  • Yousefi M , DehghaniS , NosratiRet al. Current insights into the metastasis of epithelial ovarian cancer-hopes and hurdles. Cellular. Oncol43(4), 2211–3428 (2020).
  • Benson EA , SkaarTC , LiuYet al. Carboplatin with decitabine therapy, in recurrent platinum resistant ovarian cancer, alters circulating miRNAs concentrations: a pilot study. PLoS ONE10(10), e0141279 (2015).
  • Sharifi N , SalmaninejadA , FerdosiSet al. HER2 gene amplification in patients with prostate cancer: evaluating a CISH-based method. Oncol. Lett.12(6), 4651–4658 (2016).
  • Salmaninejad A , GhadamiS , DizajiMZet al. Molecular characterization of KRAS, BRAF, and EGFR genes in cases with prostatic adenocarcinoma; reporting bioinformatics description and recurrent mutations. Clin. Lab.61(7), 749–59 (2015).
  • Watahiki A , WangY , MorrisJet al. MicroRNAs associated with metastatic prostate cancer. PLoS ONE6(9), e24950 (2011).
  • Arámbula-Meraz E , Bergez-HernándezF , Leal-LeNEet al. Expression of miR-148b-3p is correlated with overexpression of biomarkers in prostate cancer. Genet. Mol. Biol.43(1), (2020).
  • Znaor A , Lortet-TieulentJ , LaversanneMet al. International variations and trends in renal cell carcinoma incidence and mortality. Eur. Urol.67(3), 519–530 (2015).
  • Sellitti FD , DoiQS. MicroRNAs in renal cell carcinoma. Microrna4(1), 26–35 (2015).
  • Yu T , WangXY , GongRGet al. The expression profile of microRNAs in a model of 7, 12-dimethyl-benz [a] anthrance-induced oral carcinogenesis in Syrian hamster. J. Exp. Clin. Cancer Res.28(1), 64 (2009).
  • Carvalho AL , IkedaMK , MagrinJ , KowalskiLP. Trends of oral and oropharyngeal cancer survival over five decades in 3267 patients treated in a single institution. Oral. Oncol.40(1), 71–76 (2004).
  • Kessler P , GrabenbauerG , LeherAet al. Neoadjuvant and adjuvant therapy in patients with oral squamous cell carcinoma: long-term survival in a prospective, non-randomized study. Br. J. Oral. Maxillofac. Surg.46(1), 1–5 (2008).
  • Baykul T , YilmazH , AydinUet al. Early diagnosis of oral cancer. J. Int. Med. Res.38(3), 737–749 (2010).
  • Stucken E , WeissmanJ , SpiegelJH. Oral cavity risk factors: experts’ opinions and literature support. Otolaryngol. Head Neck Surg.39(1), (2010).
  • De Aguiar FCA Jr , KowalskiLP , DeAlmeida OP. Clinicopathological and immunohistochemical evaluation of oral squamous cell carcinoma in patients with early local recurrence. Oral. Oncol.43(6), 593–601 (2007).
  • Lu YC , ChenYJ , WangH-Met al. Oncogenic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling. Cancer Prev. Res.5(4), 665–674 (2012).
  • Adams CM , KimAS , MitraRet al. BCL-W has a fundamental role in B cell survival and lymphomagenesis. J. Clin. Invest.127(2), 635–650 (2017).
  • Chauhan D , VelankarM , BrahmandamMet al. A novel Bcl-2/Bcl-X L/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene26(16), 2374–2380 (2007).
  • Sánchez-Espiridión B , Martín-MorenoAM , MontalbánCet al. Micro RNA signatures and treatment response in patients with advanced classical Hodgkin lymphoma. Br. J. Haematol.162(3), 336–347 (2013).
  • Ohyashiki JH , OhtsukiK , MizoguchiIet al. Downregulated microRNA-148b in circulating PBMCs in chronic myeloid leukemia patients with undetectable minimal residual disease: a possible biomarker to discontinue imatinib safely. Drug. Des. Devel. Ther.8, 1151 (2014).
  • Melnikova VO , Bar-EliM. Transcriptional control of the melanoma malignant phenotype. Cancer Biol. Ther.7(7), 997–1003 (2008).
  • Van Kempen LC , VanDen Oord JJ , Van MuijenGNet al. Activated leukocyte cell adhesion molecule/CD166, a marker of tumor progression in primary malignant melanoma of the skin. Am. J. Clin. Pathol.156(3), 769–774 (2000).
  • Van Kilsdonk JW , WiltingRH , BergersMet al. Attenuation of melanoma invasion by a secreted variant of activated leukocyte cell adhesion molecule. Cancer Res.68(10), 3671–3679 (2008).
  • Jannie KM , StippCS , WeinerJA. ALCAM regulates motility, invasiveness, and adherens junction formation in uveal melanoma cells. PLoS ONE7(6), e39330 (2012).
  • Chatzellis E , AlexandrakiKI , AndroulakisII , KaltsasG. Aggressive pituitary tumors. Neuroendocrinology101(2), 87–104 (2015).
  • Scheithauer BW , Kurtkaya-YapıcıerÖ , KovacsKTet al. Pituitary carcinoma: a clinicopathological review. Neurosurgery56(5), 1066–1074 (2005).
  • Ezzat S , AsaSL. Mechanisms of disease: the pathogenesis of pituitary tumors. Nat. Clin. Pract. Endocrinol. Metab.2(4), 220–230 (2006).
  • Shao S , LiX. Clinical features and analysis in 1385 Chinese patients with pituitary adenomas. J. Neurosurg. Sci.57(3), 267 (2013).
  • He W , HuangL , LiMet al. MiR-148b, MiR-152/ALCAM axis regulates the proliferation and invasion of pituitary adenomas cells. Cell Physiol. Biochem.44(2), 792–803 (2017).
  • Bowen MA , AruffoAA , BajorathJ. Cell surface receptors and their ligands: In vitro analysis of CD6-CD166 interactions. Proteins40(3), 420–428 (2000).
  • Weidle UH , EggleD , KlostermannS , SwartGW. ALCAM/CD166: cancer-related issues. Cancer Genom. Proteom.7(5), 231–243 (2010).
  • Dinger ME , MercerTR , MattickJS. RNAs as extracellular signaling molecules. J. Mol. Endocrinol.40(4), 151–9 (2008).
  • Bader AG , BrownD , StoudemireJ , LammersP. Developing therapeutic microRNAs for cancer. Gene Ther.18(12), 1121–6 (2011).
  • Whitehead KA , LangerR , AndersonDG. Knocking down barriers: advances in siRNA delivery. Rev. Drug. Discov.8(2), 129–38 (2009).
  • Takeshita F , MinakuchiY , NagaharaSet al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc. Natl Acad. Sci. USA102(34), 12177–82 (2005).
  • Takeshita F , PatrawalaL , OsakiMet al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol. Ther.18(1), 181–7 (2010).
  • Wiggins JF , RuffinoL , KelnarKet al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res.70(14), 5923–30 (2010).
  • Wu Y , CrawfordM , YuB , MaoYet al. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol. Pharm.8(4), 1381–9 (2011).
  • Bonci D , CoppolaV , MusumeciMet al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med.14(11), 1271–7 (2008).
  • Bowen MA , AruffoAA , BajorathJ. Cell surface receptors and their ligands: in vitro analysis of CD6-CD166 interactions. Proteins40(3), 420–8 (2000).
  • Weidle UH , EggleD , KlostermannS , SwartGW. ALCAM/CD166: cancer-related issues. Cancer Genomics Proteomics7(5), 231–43 (2010).
  • Trang P , MedinaPP , WigginsJFet al. Regression of murine lung tumors by the let-7 microRNA. Oncogene29(11), 1580–7 (2010).
  • Kota J , ChivukulaRR , O’DonnellKAet al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell137(6), 1005–17 (2009).
  • Maegdefessel L , AzumaJ , TohRet al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci. Transl. Med.4(122), 122ra22 (2012).
  • Miyazaki Y , AdachiH , KatsunoMet al. Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat. Med.18(7), 1136–41 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.