143
Views
0
CrossRef citations to date
0
Altmetric
Preliminary Communication

DNA Methylation Dynamics of Long Noncoding RNA During Human Fetal Development

, , , , , , & ORCID Icon show all
Pages 1347-1358 | Received 08 May 2021, Accepted 26 Aug 2021, Published online: 24 Sep 2021

References

  • Sch¨ubeler D . Function and information content of DNA methylation. Nature517(7534), 321–326 (2015).
  • Lee HJ , LowdonRF , MaricqueBet al. Developmental enhancers revealed by extensive DNA methylome maps of zebrafish early embryos. Nat. Commun.6, 6315 (2015).
  • Li C , FanY , LiGet al. DNA methylation reprogramming of functional elements during mammalian embryonic development. Cell Discov.4, 41 (2018).
  • Pujadas E , FeinbergAP. Regulated noise in the epigenetic landscape of development and disease. Cell148(6), 1123–1131 (2012).
  • Greenberg MVC , Bourc’hisD. The diverse roles of DNA methylation in mammalian development and disease. Nature Rev. Mol. Cell Biol.20(10), 590–607 (2019).
  • Luo C , HajkovaP , EckerJR. Dynamic DNA methylation: in the right place at the right time. Science (New York, NY)361(6409), 1336–1340 (2018).
  • Baubec T , ColomboDF , WirbelauerCet al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature520(7546), 243–247 (2015).
  • Moore LD , LeT , FanG. DNA methylation and its basic function. Neuropsychopharmacol.38(1), 23–38 (2013).
  • Zhou F , WangR , YuanPet al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature572(7771), 660–664 (2019).
  • Quinn JJ , ChangHY. Unique features of long non-coding RNA biogenesis and function. Nature Rev. Genetics17(1), 47–62 (2016).
  • Bouckenheimer J , AssouS , RiquierSet al. Long non-coding RNAs in human early embryonic development and their potential in ART. Human Reprod. Update23(1), 19–40 (2016).
  • Kretz M , SiprashviliZ , ChuCet al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature493(7431), 231–235 (2013).
  • Kretz M , WebsterDE , FlockhartRJet al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Gene Dev.26(4), 338–343 (2012).
  • Li Z , YanM , YuYet al. LncRNA H19 promotes the committed differentiation of stem cells from apical papilla via miR-141/SPAG9 pathway. Cell Death Dis.10(2), 130 (2019).
  • He Q , YangS , GuX , LiM , WangC , WeiF. Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A. Cell Death Dis.9(5), 455 (2018).
  • Zhi H , LiX , WangPet al. Lnc2Meth: a manually curated database of regulatory relationships between long non-coding RNAs and DNA methylation associated with human disease. Nucleic Acids Res.46(D1), D133–D138 (2018).
  • Wang Z , YangB , ZhangMet al. lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer. Cancer Cell33(4), 706–720.e709 (2018).
  • Slieker RC , RoostMS , Van IperenLet al. DNA methylation landscapes of human fetal development. PLoS Genetics11(10), e1005583 (2015).
  • Kundaje A , MeulemanW , ErnstJet al. Integrative analysis of 111 reference human epigenomes. Nature518(7539), 317–330 (2015).
  • Zhou W , LairdPW , ShenH. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res.45(4), e22 (2017).
  • Karolchik D , BaertschR , DiekhansMet al. The UCSC Genome Browser Database. Nucleic Acids Res.31(1), 51–54 (2003).
  • Frankish A , DiekhansM , FerreiraAMet al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res.47(D1), D766–D773 (2019).
  • Quinlan AR , HallIM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics26(6), 841–842 (2010).
  • Wang Z , YangB , ZhangMet al. lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer. Cancer Cell33(4), 706–720; e709 (2018).
  • Yanai I , BenjaminH , ShmoishMet al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics21(5), 650–659 (2005).
  • Fornes O , Castro-MondragonJA , KhanAet al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res.48(D1), D87–D92 (2020).
  • Grant CE , BaileyTL , NobleWS. FIMO: scanning for occurrences of a given motif. Bioinformatics (Oxford, UK)27(7), 1017–1018 (2011).
  • Wagih O . ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics (Oxford, UK)33(22), 3645–3647 (2017).
  • Kuleshov MV , JonesMR , RouillardADet al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res.44(W1), W90–W97 (2016).
  • Kopp F , MendellJT. Functional classification and experimental dissection of long noncoding RNAs. Cell172(3), 393–407 (2018).
  • Li JH , LiuS , ZhouH , QuLH , YangJH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res.42(Database issue), D92–D97 (2014).
  • Pekowska A , BenoukrafT , FerrierP , SpicugliaS. A unique H3K4me2 profile marks tissue-specific gene regulation. Genome Res.20(11), 1493–1502 (2010).
  • Igolkina AA , ZinkevichA , KarandashevaKOet al. H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 histone tags suggest distinct regulatory evolution of open and condensed chromatin landmarks. Cells8(9), 1034 (2019).
  • Kratz A , ArnerE , SaitoRet al. Core promoter structure and genomic context reflect histone 3 lysine 9 acetylation patterns. BMC Genomics11, 257 (2010).
  • Katoh N , KurodaK , TomikawaJet al. Reciprocal changes of H3K27ac and H3K27me3 at the promoter regions of the critical genes for endometrial decidualization. Epigenomics10(9), 1243–1257 (2018).
  • Meissner A , MikkelsenTS , GuHet al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature454(7205), 766–770 (2008).
  • The GTEx Consortium . The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science (New York, NY)369(6509), 1318–1330 (2020).
  • Lonsdale J , ThomasJ , SalvatoreMet al. The Genotype-Tissue Expression (GTEx) project. Nature Genet.45(6), 580–585 (2013).
  • Mohanty V , Gokmen-PolarY , BadveS , JangaSC. Role of lncRNAs in health and disease-size and shape matter. Brief Funct. Genomics14(2), 115–129 (2015).
  • Belinsky GS , SiroisCL , RichMTet al. Dopamine receptors in human embryonic stem cell neurodifferentiation. Stem. Cells Devel.22(10), 1522–1540 (2013).
  • Simmonds CS , KovacsCS. Role of parathyroid hormone (PTH) and PTH-related protein (PTHrP) in regulating mineral homeostasis during fetal development. Critical Rev. Eukaryotic Gene Expr.20(3), 235–273 (2010).
  • Boucherat O , NadeauV , Bérubé-SimardFA , CharronJ , JeannotteL. Crucial requirement of ERK/MAPK signaling in respiratory tract development. Development (Cambridge, UK)141(16), 3197–3211 (2014).
  • Frémin C , Saba-El-LeilMK , LévesqueK , AngSL , MelocheS. Functional redundancy of ERK1 and ERK2 MAP kinases during development. Cell Reports12(6), 913–921 (2015).
  • Singh S , YinX , PisanoMM , GreeneRM. Molecular profiles of mitogen activated protein kinase signaling pathways in orofacial development. Birth Defects Res.79(1), 35–44 (2007).
  • Wiley LM , AdamsonED , TsarkEC. Epidermal growth factor receptor function in early mammalian development. BioEssays: News Rev. Mol. Cell Devel. Biol.17(10), 839–846 (1995).
  • Chau KF , ShannonML , FameRMet al. Downregulation of ribosome biogenesis during early forebrain development. eLife2018 (7), e36998 (2018).
  • Ahir BK , PrattenMK. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development. Int. J. Devel. Biol.58(9), 649–662 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.