178
Views
0
CrossRef citations to date
0
Altmetric
Review

The Role of Noncoding RNAs in Pituitary Adenoma

ORCID Icon, , , , & ORCID Icon
Pages 1421-1437 | Received 12 May 2021, Accepted 18 Aug 2021, Published online: 24 Sep 2021

References

  • Cheng S , LiC , XieWet al. Integrated analysis of DNA methylation and mRNA expression profiles to identify key genes involved in the regrowth of clinically non-functioning pituitary adenoma. Aging (Albany, NY)12(3), 2408 (2020).
  • Laurinaitytė I , GedvilaitėG , VilkevičiūtėA , GlebauskienėB , LiutkevičienėR , KriaučiūnienėL. The role of TERT rs2736098 gene polymorphism in invasive pituitary adenoma. Presented at: 4th Vita Scientia International Life Sciences conference.Vilnius University, Vilnius, Lithuania, (3 January 2020).
  • Bilga I , NasrH , StrogerJ. Transsphenoidal pituitary tumor resection: the Cook County experience. J. Neurosurg. Anesthesiol.29, 532 (2017).
  • Ezzat S , AsaSL , CouldwellWTet al. The prevalence of pituitary adenomas: a systematic review. Cancer101(3), 613–619 (2004).
  • Vasilev V , DalyAF , ZacharievaS , BeckersA. Clinical and molecular update on genetic causes of pituitary adenomas. Horm. Metab. Res.52(8), 553–561 (2020).
  • Wery M , KwapiszM , MorillonA. Noncoding RNAs in gene regulation. Wiley Interdiscip. Rev. Syst. Biol. Med.3(6), 728–738 (2011).
  • Azizi Z , Mirtavoos-MahyariH , KarimiR , NorooziZ , MotevaseliE. Long non-coding RNAs: diverse roles in various disorders. Hum. Antibodies27(4), 221–225 (2019).
  • Gu HF . Genetic and epigenetic studies in diabetic kidney disease. Front. Genet10, 507 (2019).
  • Wang Z , YangB , ZhangMet al. lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer. Cancer Cell33(4), 706–720. e709 (2018).
  • Jadaliha M , GholamalamdariO , TangWet al. A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genet.14(11), e1007802 (2018).
  • Bahreini F , RayzanE , RezaeiN. MicroRNA-related single-nucleotide polymorphisms and breast cancer. J. Cell. Physiol.236(3), 1593–1605 (2021).
  • Trivellin G , ButzH , DelhoveJet al. MicroRNA miR-107 is overexpressed in pituitary adenomas and inhibits the expression of aryl hydrocarbon receptor-interacting protein in vitro. Am. J. Physiol. Endocrinol. Metab.303(6), E708–E719 (2012).
  • Sullivan CS , GanemD. MicroRNAs and viral infection. Mol. Cell20(1), 3–7 (2005).
  • Cappabianca P , CaggianoC , SolariDet al. Pituitary adenomas. In: Brain and Spine Surgery in the Elderly.BerhoumaM, Krolak-SalmonP ( Eds). Springer, Cham, Switzerland, 141–151 (2017).
  • Shin M-S , YuJH , ChoiJHet al. Long-term changes in serum IGF-1 levels after successful surgical treatment of growth hormone-secreting pituitary adenoma. Neurosurgery73(3), 473–479 (2013).
  • Iglesias P , BerrocalVR , DíezJJ. Giant pituitary adenoma: histological types, clinical features and therapeutic approaches. Endocrine61(3), 407–421 (2018).
  • Van Roosbroeck K , PolletJ , CalinGA. miRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev. Mol. Diagn.13(2), 183–204 (2013).
  • Bottoni A , ZatelliMC , FerracinMet al. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J. Cell. Physiol.210(2), 370–377 (2007).
  • Li J , XuanZ , LiuC. Long non-coding RNAs and complex human diseases. Int. J. Mol. Sci.14(9), 18790–18808 (2013).
  • Mercer TR , DingerME , MattickJS. Long non-coding RNAs: insights into functions. Nat. Rev. Genet.10(3), 155–159 (2009).
  • Novikova IV , HennellySP , TungC-S , SanbonmatsuKY. Rise of the RNA machines: exploring the structure of long non-coding RNAs. J. Mol. Biol.425(19), 3731–3746 (2013).
  • Bhat SA , AhmadSM , MumtazPTet al. Long non-coding RNAs: mechanism of action and functional utility. Noncoding RNA Res.1(1), 43–50 (2016).
  • Neguembor MV , JothiM , GabelliniD. Long noncoding RNAs, emerging players in muscle differentiation and disease. Skelet. Muscle4(1), 8 (2014).
  • Takahashi H , KozhuharovaA , SharmaHet al. Identification of functional features of synthetic SINEUPs, antisense lncRNAs that specifically enhance protein translation. PLoS ONE13(2), e0183229 (2018).
  • Li Z , LiC , LiuC , YuS , ZhangY. Expression of the long non-coding RNAs MEG3, HOTAIR, and MALAT-1 in non-functioning pituitary adenomas and their relationship to tumor behavior. Pituitary18(1), 42–47 (2015).
  • Zhang Y , TanY , WangH , XuM , XuL. Long non-coding RNA Plasmacytoma Variant Translocation 1 (PVT1) enhances proliferation, migration, and epithelial–mesenchymal transition (EMT) of pituitary adenoma cells by activating beta-catenin, c-Myc, and cyclin D1 expression. Med. Sci. Monit.25, 7652–7659 (2019).
  • Zhou W , LiY , GouSet al. MiR-744 increases tumorigenicity of pancreatic cancer by activating Wnt/β-catenin pathway. Oncotarget6(35), 37557 (2015).
  • Liang W , ZouY , QinFet al. sTLR4/MD-2 complex inhibits colorectal cancer migration and invasiveness in vitro and in vivo by lncRNA H19 down-regulation. Acta Biochim. Biophys. Sin. (Shanghai)49(11), 1035–1041 (2017).
  • Lu T , YuC , NiH , LiangW , YanH , JinW. Expression of the long non-coding RNA H19 and MALAT-1 in growth hormone-secreting pituitary adenomas and its relationship to tumor behavior. Int. J. Dev. Neurosci.67, 46–50 (2018).
  • Gupta RA , ShahN , WangKCet al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature464(7291), 1071–1076 (2010).
  • Rinn JL , KerteszM , WangJKet al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell129(7), 1311–1323 (2007).
  • D’angelo D , MussnichP , SepeRet al. RPSAP52 lncRNA is overexpressed in pituitary tumors and promotes cell proliferation by acting as miRNA sponge for HMGA proteins. J. Mol. Med.97(7), 1019–1032 (2019).
  • Tang H , HouB , YeZ , LingC , GuoY. Knockdown of long non-coding RNA AFAP1-AS1 inhibits growth and promotes apoptosis in pituitary adenomas. Int. J. Clin. Exp. Pathol.11(3), 1238 (2018).
  • Mao D , JieY , LvY. LncRNA SNHG6 induces epithelial–mesenchymal transition of pituitary adenoma via suppressing miR-944. Cancer Biother. Radiopharm. doi:10.1089/cbr.2020.3587 (2020) ( Epub ahead of print).
  • Yu G , LiC , XieWet al. Long non-coding RNA C5orf66-AS1 is downregulated in pituitary null cell adenomas and is associated with their invasiveness. Oncol. Rep.38(2), 1140–1148 (2017).
  • Zhou Y , ZhongY , WangYet al. Activation of p53 by MEG3 non-coding RNA. J. Biol. Chem.282(34), 24731–24742 (2007).
  • Chillón I , MarciaM. The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Crit. Rev. Biochem. Mol. Biol.55(6), 662–690 (2020).
  • Uroda T , AnastasakouE , RossiAet al. Conserved pseudoknots in lncRNA MEG3 are essential for stimulation of the p53 pathway. Mol. Cell75(5), 982–995e989 (2019).
  • Cui M , YouL , RenX , ZhaoW , LiaoQ , ZhaoY. Long non-coding RNA PVT1 and cancer. Biochem. Biophys. Res. Commun.471(1), 10–14 (2016).
  • Zhang Y , WangX. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol.13(1), 1–16 (2020).
  • Medrzycki M , ZhangY , ZhangWet al. Histone h1.3 suppresses h19 noncoding RNA expression and cell growth of ovarian cancer cells. Cancer Res.74(22), 6463–6473 (2014).
  • Jiang X , YanY , HuMet al. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. J. Neurosurg.124(1), 129–136 (2016).
  • Collette J , LeBourhis X , AdriaenssensE. Regulation of human breast cancer by the long non-coding RNA H19. Int. J. Mol. Sci.18(11), 2319 (2017).
  • Zhu M , ChenQ , LiuXet al. lnc RNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J.281(16), 3766–3775 (2014).
  • Lv J , MaL , ChenX-L , HuangX-H , WangQ. Downregulation of lncRNAH19 and miR-675 promotes migration and invasion of human hepatocellular carcinoma cells through AKT/GSK-3β/Cdc25A signaling pathway. J. Huazhong Univ. Sci. Technolog. Med. Sci.34(3), 363–369 (2014).
  • Yoshimizu T , MiroglioA , RipocheM-Aet al. The H19 locus acts in vivo as a tumor suppressor. Proc. Natl Acad. Sci. USA105(34), 12417–12422 (2008).
  • Lee YS , DuttaA. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev.21(9), 1025–1030 (2007).
  • Meyer B , LoeschkeS , SchultzeAet al. HMGA2 overexpression in non-small cell lung cancer. Mol. Carcinog.46(7), 503–511 (2007).
  • Sun M , SongC-X , HuangHet al. HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proc. Natl Acad. Sci. USA110(24), 9920–9925 (2013).
  • Wang X , LiuX , LiAY-Jet al. Overexpression of HMGA2 promotes metastasis and impacts survival of colorectal cancers. Clin. Cancer. Res.17(8), 2570–2580 (2011).
  • Zha L , ZhangJ , TangWet al. HMGA2 elicits EMT by activating the Wnt/β-catenin pathway in gastric cancer. Dig. Dis. Sci.58(3), 724–733 (2013).
  • D’angelo D , ArraC , FuscoA. RPSAP52 lncRNA inhibits p21Waf1/CIP expression by interacting with the RNA binding protein HuR. Oncol. Res.28(2), 191–201 (2020).
  • Lu X , ZhouC , LiR , DengY , ZhaoL , ZhaiW. Long noncoding RNA AFAP1-AS1 promoted tumor growth and invasion in cholangiocarcinoma. Cell. Physiol. Biochem.42(1), 222–230 (2017).
  • Luo HL , HuangMD , GuoJNet al. AFAP1-AS1 is upregulated and promotes esophageal squamous cell carcinoma cell proliferation and inhibits cell apoptosis. Cancer Med.5(10), 2879–2885 (2016).
  • Yang S , LinR , SiL , CuiM , ZhangX , FanL. Expression and functional role of long non-coding RNA AFAP1-AS1 in ovarian cancer. Eur. Rev. Med. Pharmacol. Sci.20(24), 5107–5112 (2016).
  • Tang Y , HeY , ShiLet al. Co-expression of AFAP1-AS1 and PD-1 predicts poor prognosis in nasopharyngeal carcinoma. Oncotarget8(24), 39001 (2017).
  • Yan K , TianJ , ShiW , XiaH , ZhuY. LncRNA SNHG6 is associated with poor prognosis of gastric cancer and promotes cell proliferation and EMT through epigenetically silencing p27 and sponging miR-101-3p. Cell. Physiol. Biochem.42(3), 999–1012 (2017).
  • Gao N , YeB. SPI1-induced upregulation of lncRNA SNHG6 promotes non-small cell lung cancer via miR-485-3p/VPS45 axis. Biomed. Pharmacother.129, 110239 (2020).
  • Chen S , XieC , HuX. LncRNA SNHG6 functions as a ceRNA to up-regulate c-Myc expression via sponging let-7c-5p in hepatocellular carcinoma. Biochem. Biophys. Res. Commun.519(4), 901–908 (2019).
  • Zhang M , DuanW , SunW. LncRNA SNHG6 promotes the migration, invasion, and epithelial–mesenchymal transition of colorectal cancer cells by miR-26a/EZH2 axis. Onco Targets Ther.12, 3349 (2019).
  • Wang X , LanZ , HeJet al. LncRNA SNHG6 promotes chemoresistance through ULK1-induced autophagy by sponging miR-26a-5p in colorectal cancer cells. Cancer Cell Int.19(1), 1–12 (2019).
  • Cai G , ZhuQ , YuanL , LanQ. LncRNA SNHG6 acts as a prognostic factor to regulate cell proliferation in glioma through targeting p21. Biomed. Pharmacother.102, 452–457 (2018).
  • Tang JT , ZhaoJ , ShengW , ZhouJP , DongQ , DongM. Ectopic expression of miR-944 impairs colorectal cancer cell proliferation and invasion by targeting GATA binding protein 6. J. Cell. Mol. Med.23(5), 3483–3494 (2019).
  • Flores-Pérez A , MarchatLA , Rodríguez-CuevasSet al. Suppression of cell migration is promoted by miR-944 through targeting of SIAH1 and PTP4A1 in breast cancer cells. BMC Cancer16(1), 1–12 (2016).
  • Wei G , LuoH , SunYet al. Transcriptome profiling of esophageal squamous cell carcinoma reveals a long noncoding RNA acting as a tumor suppressor. Oncotarget6(19), 17065 (2015).
  • Liu D , YangC , BojdaniE , MuruganAK , XingM. Identification of RASAL1 as a major tumor suppressor gene in thyroid cancer. J. Natl Cancer Inst.105(21), 1617–1627 (2013).
  • Zhu YP , BianXJ , YeDWet al. Long noncoding RNA expression signatures of bladder cancer revealed by microarray. Oncol. Lett.7(4), 1197–1202 (2014).
  • Zhang X , ZhouY , MehtaKRet al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J. Clin. Endocrinol. Metab.88(11), 5119–5126 (2003).
  • Bando T , KatoY , IharaY , YamagishiF , TsukadaK , IsobeM. Loss of heterozygosity of 14q32 in colorectal carcinoma. Cancer Genet. Cytogenet.111(2), 161–165 (1999).
  • Braconi C , KogureT , ValeriNet al. MicroRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene30(47), 4750–4756 (2011).
  • Wang P , RenZ , SunP. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J. Cell. Biochem.113(6), 1868–1874 (2012).
  • Zhang X , GejmanR , MahtaAet al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res.70(6), 2350–2358 (2010).
  • Bahreini F , RamezaniS , ShahangianS , SalehiZ , MashayekhiF. miR-559 polymorphism rs58450758 is linked to breast cancer. Br. J. Biomed. Sci.77(1), 29–34 (2020).
  • Mohammadi A , MansooriB , BaradaranB. The role of microRNAs in colorectal cancer. Biomed. Pharmacother.84, 705–713 (2016).
  • Sevignani C , CalinGA , SiracusaLD , CroceCM. Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm. Genome17(3), 189–202 (2006).
  • Vicchio T , AliquòF , RuggeriRet al. MicroRNAs expression in pituitary tumors: differences related to functional status, pathological features, and clinical behavior. J. Endocrinol. Invest.43(7), 947–958 (2020).
  • Gossing W , FrohmeM , RadkeL. Biomarkers for liquid biopsies of pituitary neuroendocrine tumors. Biomedicines8(6), 148 (2020).
  • Amaral FC , TorresN , SaggioroFet al. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J. Clin. Endocrinol. Metab.94(1), 320–323 (2009).
  • Sampson VB , RongNH , HanJet al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res.67(20), 9762–9770 (2007).
  • Bottoni A , PiccinD , TagliatiF , LuchinA , ZatelliMC , DegliUberti EC. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J. Cell. Physiol.204(1), 280–285 (2005).
  • Shi X , TaoB , HeHet al. MicroRNAs-based network: a novel therapeutic agent in pituitary adenoma. Med. Hypotheses78(3), 380–384 (2012).
  • Leone V , LangellaC , D’angeloDet al. Mir-23b and miR-130b expression is downregulated in pituitary adenomas. Mol. Cell. Endocrinol.390(1–2), 1–7 (2014).
  • Yu C , LiJ , SunF , CuiJ , FangH , SuiG. Expression and clinical significance of miR-26a and pleomorphic adenoma gene 1 (PLAG1) in invasive pituitary adenoma. Med. Sci. Monit.22, 5101 (2016).
  • D’angelo D , PalmieriD , MussnichPet al. Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of miRNA targeting HMGA1, HMGA2, and E2F1. J. Clin. Endocrinol. Metab.97(7), E1128–E1138 (2012).
  • Butz H , LikóI , CzirjákSet al. MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary14(2), 112–124 (2011).
  • Duan J , LuG , LiY , ZhouS , ZhouD , TaoH. miR-137 functions as a tumor suppressor gene in pituitary adenoma by targeting AKT2. Int. J. Clin. Exp. Pathol.12(5), 1557 (2019).
  • Du Y , XuY , DingLet al. Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J. Gastroenterol.44(6), 556–561 (2009).
  • Dai F-Q , LiC-R , FanX-Q , TanL , WangR-T , JinH. miR-150-5p inhibits non-small-cell lung cancer metastasis and recurrence by targeting HMGA2 and β-catenin signaling. Mol. Ther. Nucleic Acids16, 675–685 (2019).
  • Wu S , GuY , HuangYet al. Novel biomarkers for non-functioning invasive pituitary adenomas were identified by using analysis of microRNAs expression profile. Biochem. Genet.55(3), 253–267 (2017).
  • Zhang L , HeX , LiFet al. The miR-181 family promotes cell cycle by targeting CTDSPL, a phosphatase-like tumor suppressor in uveal melanoma. J. Exp. Clin. Cancer Res.37(1), 15 (2018).
  • He Z , ChenL , WangQet al. MicroRNA-186 targets SKP2 to induce p27Kip1-mediated pituitary tumor cell cycle deregulation and modulate cell proliferation. Korean J. Physiol. Pharmacol.23(3), 171–179 (2019).
  • Liu Y , GuoY , LiangHet al. miR-181b functions as an oncomiR in colorectal cancer by targeting PDCD4. Protein Cell7(10), 722–734 (2016).
  • Wang X , ShiZ , LiuXet al. Upregulation of miR-191 promotes cell growth and invasion via targeting TIMP3 in prostate cancer. J. BUON23(2), 444–452 (2018).
  • Liao C , ChenW , FanXet al. MicroRNA-200c inhibits apoptosis in pituitary adenoma cells by targeting the PTEN/Akt signaling pathway. Oncol. Res.21(3), 129–136 (2014).
  • Wang HY , GaoHQ. Reduction of miR-212 contributes to pituitary adenoma cell invasion via targeting c-Met. Kaohsiung J. Med. Sci.36(2), 81–88 (2020).
  • Wang Y , ZhaoJ , ZhangC , WangP , HuangC , PengH. MiR-219a-2-3p suppresses cell proliferation and promotes apoptosis by targeting MDM2/p53 in pituitary adenomas cells. Biosci. Biotechnol. Biochem.84(5), 911–918 (2020).
  • Liang H-Q , WangR-J , DiaoC-F , LiJ-W , SuJ-L , ZhangS. The PTTG1-targeting miRNAs miR-329, miR-300, miR-381, and miR-655 inhibit pituitary tumor cell tumorigenesis and are involved in a p53/PTTG1 regulation feedback loop. Oncotarget6(30), 29413 (2015).
  • Qiu P , XuTJ , LuXD , YangW , ZhangYB , XuGM. MicroRNA-378 regulates cell proliferation and migration by repressing RNF31 in pituitary adenoma. Oncol. Lett.15(1), 789–794 (2018).
  • Chen L , GuanH , GuC , CaoY , ShaoJ , WangF. miR-383 inhibits hepatocellular carcinoma cell proliferation via targeting APRIL. Tumor Biol.37(2), 2497–2507 (2016).
  • Shen D-W , LiY-L , HouY-J , XuZ-D , LiY-Z , ChangJ-Y. MicroRNA-543 promotes cell invasion and impedes apoptosis in pituitary adenoma via activating the Wnt/β-catenin pathway by negative regulation of Smad7. Biosci. Biotechnol. Biochem.83(6), 1035–1044 (2019).
  • Li KP , FangYP , LiaoJQet al. Upregulation of miR-598 promotes cell proliferation and cell cycle progression in human colorectal carcinoma by suppressing INPP5E expression. Mol. Med. Rep.17(2), 2991–2997 (2018).
  • Zhao JL , ZhangL , GuoXet al. miR-212/132 downregulates SMAD2 expression to suppress the G1/S phase transition of the cell cycle and the epithelial to mesenchymal transition in cervical cancer cells. IUBMB Life67(5), 380–394 (2015).
  • Lu L , ZhangX , ZhangB , WuJ , ZhangX. Synaptic acetylcholinesterase targeted by microRNA-212 functions as a tumor suppressor in non-small cell lung cancer. Int. J. Biochem. Cell Biol.45(11), 2530–2540 (2013).
  • Tang T , HuanL , ZhangSet al. MicroRNA-212 functions as a tumor-suppressor in human non-small cell lung cancer by targeting SOX4. Oncol. Rep.38(4), 2243–2250 (2017).
  • Li D , BaiL , WangTet al. Function of miR-212 as a tumor suppressor in thyroid cancer by targeting SIRT1. Oncol. Rep.39(2), 695–702 (2018).
  • Li D , LiZ , XiongJet al. MicroRNA-212 functions as an epigenetic-silenced tumor suppressor involving in tumor metastasis and invasion of gastric cancer through down-regulating PXN expression. Am. J. Cancer Res.5(10), 2980 (2015).
  • Ramalinga M , RoyA , SrivastavaAet al. MicroRNA-212 negatively regulates starvation induced autophagy in prostate cancer cells by inhibiting SIRT1 and is a modulator of angiogenesis and cellular senescence. Oncotarget6(33), 34446 (2015).
  • Duan J , YangX , ZhaoJet al. Correlation among genetic variations of c-MET in Chinese patients with non-small cell lung cancer. Oncotarget9(2), 2660 (2018).
  • Shu Y , XieB , LiangZ , ChenJ. Quercetin reverses the doxorubicin resistance of prostate cancer cells by downregulating the expression of c-met. Oncol. Lett.15(2), 2252–2258 (2018).
  • Zhu X , LiY , ShenHet al. miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Lett.587(1), 73–81 (2013).
  • Dong P , XiongY , WatariHet al. MiR-137 and miR-34a directly target Snail and inhibit EMT, invasion and sphere-forming ability of ovarian cancer cells. J. Exp. Clin. Cancer Res.35(1), 1–9 (2016).
  • Zhao Y , LiY , LouGet al. MiR-137 targets estrogen-related receptor alpha and impairs the proliferative and migratory capacity of breast cancer cells. PLoS ONE7(6), e39102 (2012).
  • Guo J , XiaB , MengF , LouG. miR-137 suppresses cell growth in ovarian cancer by targeting AEG-1. Biochem. Biophys. Res. Commun.441(2), 357–363 (2013).
  • Sun Y , ZhaoX , ZhouY , HuY. miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol. Rep.28(4), 1346–1352 (2012).
  • Liberti MV , LocasaleJW. The Warburg effect: how does it benefit cancer cells?Trends Biochem. Sci.41(3), 211–218 (2016).
  • Liu M , LangN , QiuMet al. miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int. J. Cancer128(6), 1269–1279 (2011).
  • Cheng GZ , ChanJ , WangQ , ZhangW , SunCD , WangL-H. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res.67(5), 1979–1987 (2007).
  • Liu T , ZhuJ , DuWet al. AKT2 drives cancer progression and is negatively modulated by miR-124 in human lung adenocarcinoma. Respir. Res.21(1), 1–15 (2020).
  • Li J , XiaL , ZhouZet al. MiR-186-5p upregulation inhibits proliferation, metastasis and epithelial-to-mesenchymal transition of colorectal cancer cell by targeting ZEB1. Arch. Biochem. Biophys.640, 53–60 (2018).
  • Hua X , XiaoY , PanWet al. miR-186 inhibits cell proliferation of prostate cancer by targeting GOLPH3. Am. J. Cancer Res.6(8), 1650 (2016).
  • Zhu X , ShenH , YinXet al. miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin. Oncogene35(3), 323–332 (2016).
  • Zhao C , ZhangJ , MaLet al. GOLPH3 promotes angiogenesis of lung adenocarcinoma by regulating the Wnt/β-catenin signaling pathway. Onco Targets Ther.13, 6265 (2020).
  • Palumbo T , FauczFR , AzevedoM , XekoukiP , IliopoulosD , StratakisCA. Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN–AKT pathway. Oncogene32(13), 1651–1659 (2013).
  • Wang Z , ShaH-H , LiH-J. Functions and mechanisms of miR-186 in human cancer. Biomed. Pharmacother.119, 109428 (2019).
  • Sun WJ , ZhangYN , XueP. miR-186 inhibits proliferation, migration, and epithelial–mesenchymal transition in breast cancer cells by targeting twist1. J. Cell. Biochem.120(6), 10001–10009 (2019).
  • Cai J , WuJ , ZhangHet al. miR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation. Cancer Res.73(2), 756–766 (2013).
  • Niinuma T , KaiM , KitajimaHet al. Downregulation of miR-186 is associated with metastatic recurrence of gastrointestinal stromal tumors. Oncol. Lett.14(5), 5703–5710 (2017).
  • Cui Z , BaoX , LiuQet al. MicroRNA-378-3p/5p represses proliferation and induces apoptosis of oral squamous carcinoma cells via targeting KLK4. Clin. Exp. Pharmacol. Physiol.47(4), 713–724 (2020).
  • Zeng M , ZhuL , LiL , KangC. miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting SDAD1. Cell. Mol. Biol. Lett.22(1), 12 (2017).
  • Fei B , WuH. MiR-378 inhibits progression of human gastric cancer MGC-803 cells by targeting MAPK1 in vitro. Oncol. Res.20(12), 557–564 (2013).
  • Shi H , WangD , SunX , ShengL. MicroRNA-378 acts as a prognosis marker and inhibits cell migration, invasion and epithelial-mesenchymal transition in human glioma by targeting IRG1. Eur. Rev. Med. Pharmacol. Sci.22(12), 3837–3846 (2018).
  • Ma J , LinJ , QianJet al. MiR-378 promotes the migration of liver cancer cells by down-regulating Fus expression. Cell. Physiol. Biochem.34(6), 2266–2274 (2014).
  • Fleming J , TongZ , BellEet al. miR-219a-2-3p functions as a tumor suppressor in IDH wild-type gliomas by inhibiting TBK1. Int. J. Radiat. Oncol. Biol. Phys.108(3), e735–e736 (2020).
  • Yang Z , DongX , PuMet al. LBX2-AS1/miR-219a-2-3p/FUS/LBX2 positive feedback loop contributes to the proliferation of gastric cancer. Gastric Cancer23(3), 449–463 (2020).
  • Yuan W , GaoH , WangGet al. Higher miR-543 levels correlate with lower STK31 expression and longer pancreatic cancer survival. Cancer Med.9(24), 9632–9640 (2020).
  • Li J , DongG , WangB , GaoW , YangQ. miR-543 promotes gastric cancer cell proliferation by targeting SIRT1. Biochem. Biophys. Res. Commun.469(1), 15–21 (2016).
  • Du Y , ZhuH-C , LiuX-H , WangL , NingJ-Z , XiaoC-C. MiR-543 promotes proliferation and epithelial-mesenchymal transition in prostate cancer via targeting RKIP. Cell. Physiol. Biochem.41(3), 1135–1146 (2017).
  • Zhai F , CaoC , ZhangL , ZhangJ. miR-543 promotes colorectal cancer proliferation and metastasis by targeting KLF4. Oncotarget8(35), 59246 (2017).
  • Xu L , YuJ , WangZ , ZhuQ , WangW , LanQ. miR-543 functions as a tumor suppressor in glioma in vitro and in vivo. Oncol. Rep.38(2), 725–734 (2017).
  • Vo JN , CieslikM , ZhangYet al. The landscape of circular RNA in cancer. Cell176(4), 869–881e813 (2019).
  • Li Y , ZhengQ , BaoCet al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res.25(8), 981–984 (2015).
  • Bonizzato A , GaffoE , TeKronnie G , BortoluzziS. CircRNAs in hematopoiesis and hematological malignancies. Blood Cancer J.6(10), e483–e483 (2016).
  • Jahani S , NazeriE , MajidzadehAK , JahaniM , EsmaeiliR. Circular RNA; a new biomarker for breast cancer: a systematic review. J. Cell. Physiol.235(7–8), 5501–5510 (2020).
  • Yu J , XuQ-G , WangZ-Get al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J. Hepatol.68(6), 1214–1227 (2018).
  • Hu Y , ZhangN , ZhangSet al. Differential circular RNA expression profiles of invasive and non-invasive non-functioning pituitary adenomas: a microarray analysis. Medicine98(26), e16148 (2019).
  • Johnson CD , Esquela-KerscherA , StefaniGet al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res.67(16), 7713–7722 (2007).
  • Shimizu S , TakeharaT , HikitaHet al. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J. Hepatol.52(5), 698–704 (2010).
  • Boyerinas B , ParkS-M , HauA , MurmannAE , PeterME. The role of let-7 in cell differentiation and cancer. Endocr. Relat. Cancer17(1), F19–F36 (2010).
  • Yang L , WangY-L , LiuSet al. miR-181b promotes cell proliferation and reduces apoptosis by repressing the expression of adenylyl cyclase 9 (AC9) in cervical cancer cells. FEBS Lett.588(1), 124–130 (2014).
  • Ofir M , HacohenD , GinsbergD. MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol. Cancer Res.9(4), 440–447 (2011).
  • Du Q , HuB , FengYet al. Circoma1-mediated miR-145-5p suppresses tumor growth of nonfunctioning pituitary adenomas by targeting TPT1. J. Clin. Endocrinol. Metab.104(6), 2419–2434 (2019).
  • Wang B , LiW , GuoK , XiaoY , WangY , FanJ. miR-181b promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients. Biochem. Biophys. Res. Commun.421(1), 4–8 (2012).
  • Sochor M , BasovaP , PestaMet al. Oncogenic microRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer14(1), 1–7 (2014).
  • Conti A , AguennouzMH , LaTorre Det al. miR-21 and 221 upregulation and miR-181b downregulation in human grade II–IV astrocytic tumors. J. Neurooncol.93(3), 325–332 (2009).
  • Shi L , ChengZ , ZhangJet al. hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res.1236, 185–193 (2008).
  • Cui B , LiB , LiuQ , CuiY. lncRNA CCAT1 promotes glioma tumorigenesis by sponging miR-181b. J. Cell. Biochem.118(12), 4548–4557 (2017).
  • Matei D , EmersonR , LaiYet al. Autocrine activation of PDGFR α promotes the progression of ovarian cancer. Oncogene25(14), 2060–2069 (2006).
  • Li L , ZhangS , LiH , ChouH. FGFR3 promotes the growth and malignancy of melanoma by influencing EMT and the phosphorylation of ERK, AKT, and EGFR. BMC Cancer19(1), 1–12 (2019).
  • Cimmino A , CalinGA , FabbriMet al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA102(39), 13944–13949 (2005).
  • Renjie W , HaiqianL. MiR-132, miR-15a and miR-16 synergistically inhibit pituitary tumor cell proliferation, invasion and migration by targeting Sox5. Cancer Lett.356(2), 568–578 (2015).
  • Ding Y , ZhangC , ZhangJet al. miR-145 inhibits proliferation and migration of breast cancer cells by directly or indirectly regulating TGF-β1 expression. Int. J. Oncol.50(5), 1701–1710 (2017).
  • Mei L-L , WangW-J , QiuY-T , XieX-F , BaiJ , ShiZ-Z. miR-145-5p suppresses tumor cell migration, invasion and epithelial to mesenchymal transition by regulating the Sp1/NF-κB signaling pathway in esophageal squamous cell carcinoma. Int. J. Mol. Sci.18(9), 1833 (2017).
  • Sheng N , TanG , YouWet al. MiR-145 inhibits human colorectal cancer cell migration and invasion via PAK4-dependent pathway. Cancer Med.6(6), 1331–1340 (2017).
  • Du Y , LiJ , XuT , ZhouD-D , ZhangL , WangX. MicroRNA-145 induces apoptosis of glioma cells by targeting BNIP3 and Notch signaling. Oncotarget8(37), 61510 (2017).
  • Liu S , GaoG , YanDet al. Effects of miR-145-5p through NRAS on the cell proliferation, apoptosis, migration, and invasion in melanoma by inhibiting MAPK and PI 3K/AKT pathways. Cancer Med.6(4), 819–833 (2017).
  • Li J , SunD , PuW , WangJ , PengY. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer6(4), 319–336 (2020).
  • Xing W , QiZ , HuangCet al. Genome-wide identification of lncRNAs and mRNAs differentially expressed in non-functioning pituitary adenoma and construction of an lncRNA-mRNA co-expression network. Biol. Open8(1), bio037127 (2019).
  • Kang Y , HeW , TulleySet al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl Acad. Sci. USA102(39), 13909–13914 (2005).
  • Wang J , WangD , WanDet al. Circular RNA in invasive and recurrent clinical nonfunctioning pituitary adenomas: expression profiles and bioinformatic analysis. World Neurosurg.117, e371–e386 (2018).
  • Hu Y , SongQ , ZhaoJet al. Identification of plasma hsa_circ_0008673 expression as a potential biomarker and tumor regulator of breast cancer. J. Clin. Lab. Anal.34(9), e23393 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.