321
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comprehensive Methylation Profile of CSF cf DNA Revealed Pathogenesis and Diagnostic Markers for Early-Onset Parkinson’s Disease

, , , , , ORCID Icon & show all
Pages 1637-1651 | Received 20 May 2021, Accepted 16 Sep 2021, Published online: 19 Oct 2021

References

  • Ascherio A , SchwarzschildMA. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet. Neurol.15(12), 1257–1272 (2016).
  • Lim SY , TanAH , Ahmad-AnnuarAet al. Parkinson’s disease in the western Pacific region. Lancet Neurol.18(9), 865–879 (2019).
  • Lunati A , LesageS , BriceA. The genetic landscape of Parkinson’s disease. Rev. Neurol (Paris).174(9), 628–643 (2018).
  • Goldman SM . Environmental toxins and Parkinson’s disease. Annu. Rev. Pharmacol. Toxicol.54, 141–164 (2014).
  • Trist BG , HareDJ , DoubleKL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell.18(6), e13031 (2019).
  • Camerucci E , StangCD , HajebMet al. Early-onset Parkinsonism and early-onset Parkinson’s disease: a population-based study (2010–2015). J. Parkinsons Dis.11(3), 1197–1207 (2021).
  • Ferguson LW , RajputAH , RajputA. Early-onset vs. late-onset Parkinson’s disease: a clinical-pathological study. Can. J. Neurol. Sci.43(1), 113–119 (2016).
  • Schrag A , SchottJM. Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol.5(4), 355–363 (2006).
  • Friedman A . Old-onset Parkinson’s disease compared with young-onset disease: clinical differences and similarities. Acta Neurol. Scand.89(4), 258–261 (1994).
  • Gomez Arevalo G , JorgeR , GarciaS , ScipioniO , GershanikO. Clinical and pharmacological differences in early- versus late-onset Parkinson’s disease. Mov. Disord.12(3), 277–284 (1997).
  • Gibb WR , LeesAJ. A comparison of clinical and pathological features of young- and old-onset Parkinson’s disease. Neurology38(9), 1402–1406 (1988).
  • Corti O , LesageS , BriceA. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev.91(4), 1161–1218 (2011).
  • Masliah E , RockensteinE , VeinbergsIet al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science287(5456), 1265–1269 (2000).
  • Cheon SM , ChanL , ChanDK , KimJW. Genetics of Parkinson’s disease: a clinical perspective. J. Mov. Disord.5(2), 33–41 (2012).
  • Coppedè F . Genetics and epigenetics of Parkinson’s disease. Scientific World Journal.2012, 489830 (2012).
  • Miranda-Morales E , MeierK , Sandoval-CarrilloA , Salas-PachecoJ , Vázquez-CárdenasP , Arias-CarriónO. Implications of DNA methylation in Parkinson’s disease. Front. Mol. Neurosci.10, 225 (2017).
  • Nalls MA , PankratzN , LillCMet al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet.46(9), 989–993 (2014).
  • Wüllner U , KautO , deBoniL , PistonD , SchmittI. DNA methylation in Parkinson’s disease. J. Neurochem.139(Suppl. 1), 108–120 (2016).
  • Young JI , SivasankaranSK , WangLet al. Genome-wide brain DNA methylation analysis suggests epigenetic reprogramming in Parkinson disease. Neurol. Genet.5(4), e342 (2019).
  • Labbé C , Lorenzo-BetancorO , RossOA. Epigenetic regulation in Parkinson’s disease. Acta. Neuropathol.132(4), 515–530 (2016).
  • Gansauge MT , GerberT , GlockeIet al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res.45(10), e79 (2017).
  • Wang Q , GuL , AdeyAet al. Tagmentation-based whole-genome bisulfite sequencing. Nat. Protoc.8(10), 2022–2032 (2013).
  • Chen S , ZhouY , ChenY , GuJ. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics34(17), i884–i890 (2018).
  • Wöste M , LeitãoE , LaurentinoS , HorsthemkeB , RahmannS , SchröderC. Wg-blimp: an end-to-end analysis pipeline for whole genome bisulfite sequencing data. BMC Bioinformatics21(1), 169 (2020).
  • Ehrlich M . DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics14(12), 1141–1163 (2019).
  • Law PP , HollandML. DNA methylation at the crossroads of gene and environment interactions. Essays Biochem.63(6), 717–726 (2019).
  • Sawaki K , KandaM , KoderaY. Review of recent efforts to discover biomarkers for early detection, monitoring, prognosis, and prediction of treatment responses of patients with gastric cancer. Expert Rev. Gastroenterol. Hepatol.12(7), 657–670 (2018).
  • Reece M , SalujaH , HollingtonPet al. The use of circulating tumor DNA to monitor and predict response to treatment in colorectal cancer. Front. Genet.10, 1118 (2019).
  • Shemer R , MagenheimJ , DorY. Digital droplet PCR for monitoring tissue-specific cell death using DNA methylation patterns of circulating cell-free DNA. Curr. Protoc. Mol. Biol.127(1), e90 (2019).
  • Chen X , YuC , GuoMet al. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death. ACS Chem. Neurosci.10(5), 2355–2363 (2019).
  • Farinelli P , PereraA , Arango-GonzalezBet al. DNA methylation and differential gene regulation in photoreceptor cell death. Cell Death Dis.5(12), e1558 (2014).
  • Wahlin KJ , EnkeRA , FullerJA , KalesnykasG , ZackDJ , MerbsSL. Epigenetics and cell death: DNA hypermethylation in programmed retinal cell death. PLoS ONE8(11), e79140 (2013).
  • Greenberg MVC , Bourc’hisD. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol.20(10), 590–607 (2019).
  • Dauer W , PrzedborskiS. Parkinson’s disease: mechanisms and models. Neuron39(6), 889–909 (2003).
  • Moore LD , LeT , FanG. DNA methylation and its basic function. Neuropsychopharmacology38(1), 23–38 (2013).
  • Hwang JY , AromolaranKA , ZukinRS. The emerging field of epigenetics in neurodegeneration and neuroprotection [published correction appears in Nat Rev Neurosci. 2018 Dec; 19(12): 771]. Nat. Rev. Neurosci.18(6), 347–361 (2017).
  • Nguyen M , WongYC , YsselsteinD , SeverinoA , KraincD. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends. Neurosci.42(2), 140–149 (2019).
  • Mallet N , DelgadoL , ChazalonM , MiguelezC , BaufretonJ. Cellular and synaptic dysfunctions in Parkinson’s disease: stepping out of the striatum. Cells8(9), 1005 (2019).
  • Bagetta V , GhiglieriV , SgobioC , CalabresiP , PicconiB. Synaptic dysfunction in Parkinson’s disease. Biochem. Soc. Trans.38(2), 493–497 (2010).
  • Picconi B , PiccoliG , CalabresiP. Synaptic dysfunction in Parkinson’s disease. Adv. Exp. Med. Biol.970, 553–572 (2012).
  • Kumar P , KumarD , JhaSK , JhaNK , AmbastaRK. Ion channels in neurological disorders. Adv. Protein Chem. Struct. Biol.103, 97–136 (2016).
  • De Virgilio A , GrecoA , FabbriniGet al. Parkinson’s disease: autoimmunity and neuroinflammation. Autoimmun. Rev.15(10), 1005–1011 (2016).
  • Gelders G , BaekelandtV , Vander Perren A. Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J. Immunol. Res.2018, 4784268 (2018).
  • Hirsch EC , HunotS. Neuroinflammation in Parkinson’s disease: a target for neuroprotection?Lancet Neurol.8(4), 382–397 (2009).
  • Tansey MG , Romero-RamosM. Immune system responses in Parkinson’s disease: early and dynamic. Eur. J. Neurosci.49(3), 364–383 (2019).
  • Earls RH , LeeJK. The role of natural killer cells in Parkinson’s disease. Exp. Mol. Med.52(9), 1517–1525 (2020).
  • Bettiol SS , RoseTC , HughesCJ , SmithLA. Alcohol consumption and Parkinson’s disease risk: a review of recent findings. J. Parkinsons Dis.5(3), 425–442 (2015).
  • Wegrzyk J , ArmandS , ChiuvéSC , BurkhardPR , AllaliG. Education level affects dual-task gait after deep brain stimulation in Parkinson’s disease. Parkinsonism Relat. Disord.68, 65–68 (2019).
  • Chuang YH , LuAT , PaulKCet al. Longitudinal epigenome-wide methylation study of cognitive decline and motor progression in Parkinson’s disease. J. Parkinsons Dis.9(2), 389–400 (2019).
  • Eryilmaz IE , CecenerG , ErerSet al. Epigenetic approach to early-onset Parkinson’s disease: low methylation status of SNCA and PARK2 promoter regions. Neurol. Res.39(11), 965–972 (2017).
  • Nalls MA , McLeanCY , RickJet al. Diagnosis of Parkinson’s disease on the basis of clinical and genetic classification: a population-based modelling study. Lancet Neurol.14(10), 1002–1009 (2015).
  • Dickson DW , BraakH , DudaJEet al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria [published correction appears in Lancet Neurol. Lancet. Neurol.8(12), 1150–1157 (2009).
  • Erer S , EgeliU , ZarifogluMet al. Mutation analysis of the PARKIN, PINK1, DJ1, and SNCA genes in Turkish early-onset Parkinson’s patients and genotype-phenotype correlations. Clin. Neurol. Neurosurg.148, 147–153 (2016).
  • Matsumoto L , TakumaH , TamaokaAet al. CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS ONE5(11), e15522 (2010).
  • Tan YY , WuL , ZhaoZBet al. Methylation of α-synuclein and leucine-rich repeat kinase 2 in leukocyte DNA of Parkinson’s disease patients. Parkinsonism Relat. Disord.20(3), 308–313 (2014).
  • Richter J , AppenzellerS , AmmerpohlOet al. No evidence for differential methylation of α-synuclein in leukocyte DNA of Parkinson’s disease patients. Mov. Disord.27(4), 590–591 (2012).
  • Pihlstrøm L , BergeV , RengmarkA , ToftM. Parkinson’s disease correlates with promoter methylation in the α-synuclein gene. Mov. Disord.30(4), 577–580 (2015).
  • de Boni L , TierlingS , RoeberS , WalterJ , GieseA , KretzschmarHA. Next-generation sequencing reveals regional differences of the α-synuclein methylation state independent of Lewy body disease. Neuromolecular Med.13(4), 310–320 (2011).
  • Ai SX , XuQ , HuYCet al. Hypomethylation of SNCA in blood of patients with sporadic Parkinson’s disease. J. Neurol. Sci.337(1–2), 123–128 (2014).
  • De Mena L , CardoLF , CotoE , AlvarezV , CotoE. No differential DNA methylation of PARK2 in brain of Parkinson’s disease patients and healthy controls. Mov. Disord.28(14), 2032–2033 (2013).
  • Cai M , TianJ , ZhaoGH , LuoW , ZhangBR. Study of methylation levels of parkin gene promoter in Parkinson’s disease patients. Int. J. Neurosci.121(9), 497–502 (2011).
  • Masliah E , DumaopW , GalaskoD , DesplatsP. Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics8(10), 1030–1038 (2013).
  • Calligaris R , BanicaM , RoncagliaPet al. Blood transcriptomics of drug-naïve sporadic Parkinson’s disease patients. BMC Genomics.16, 876 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.