257
Views
0
CrossRef citations to date
0
Altmetric
Review

The Multiple Faces of NANOG in Cancer: A Therapeutic Target to Chemosensitize Therapy-Resistant Cancers

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1885-1900 | Received 28 Jun 2021, Accepted 05 Oct 2021, Published online: 25 Oct 2021

References

  • Fatma H , SiddiqueHR. Role of long non-coding RNAs and MYC interaction in cancer metastasis: a possible target for therapeutic intervention. Toxicol. Appl. Pharmacol.399, 115056 (2020).
  • Siddique HR , SaleemM. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells30(3), 372–378 (2012).
  • Fatma H , SiddiqueHR. Pluripotency inducing Yamanaka factors: role in stemness and chemoresistance of liver cancer. Expert Rev. Anticancer. Ther.21(8), 853–864 (2021).
  • Lee-Six H , OlafssonS , EllisPet al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature574(7779), 532–537 (2019).
  • Miranda Furtado CL , DosSantos Luciano MC , SilvaSantos RD , FurtadoGP , MoraesMO , PessoaC. Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics14(12), 1164–1176 (2019).
  • Fatma H , MauryaSK , SiddiqueHR. Epigenetic modifications of c-MYC: role in cancer cell reprogramming, progression and chemoresistance. Semin. Cancer Biol. doi:10.1016/j.semcancer.2020.11.008 (2020) ( Epub ahead of print).
  • Madakashira BP , SadlerKC. DNA methylation, nuclear organization, and cancer. Front. Genet.8, 76 (2017).
  • Liyanage C , WathupolaA , MuraleetharanS , PereraK , PunyadeeraC , UdagamaP. Promoter hypermethylation of tumor-suppressor genes p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 in salivary DNA as a quadruple biomarker panel for early detection of oral and oropharyngeal cancers. Biomolecules9(4), 148 (2019).
  • Grubelnik G , BoštjančičE , PavličA , KosM , ZidarN. NANOG expression in human development and cancerogenesis. Exp. Biol. Med. (Maywood).245(5), 456–464 (2020).
  • Siddique HR , FeldmanDE , ChenCL , PunjV , TokumitsuH , MachidaK. NUMB phosphorylation destabilizes p53 and promotes self-renewal of tumor-initiating cells by a NANOG-dependent mechanism in liver cancer. Hepatology62(5), 1466–1479 (2015).
  • Machida K . Pluripotency transcription factors and metabolic reprogramming of mitochondria in tumor-initiating stem-like cells. Antioxid. Redox. Signal.28(11), 1080–1089 (2018).
  • Gong L , YanQ , ZhangY , FangX , LiuB , GuanX. Cancer cell reprogramming: a promising therapy converting malignancy to benignity. Cancer. Commun.9(1), 48 (2019).
  • Kakiuchi S , MinamiY , MiyataYet al. NANOG expression as a responsive biomarker during treatment with Hedgehog signal inhibitor in acute myeloid leukemia. Int. J. Mol. Sci.18(3), 486 (2017).
  • Jeter CR , YangT , WangJ , ChaoHP , TangDG. Concise review: NANOG in cancer stem cells and tumor development: an update and outstanding questions. Stem Cells33(8), 2381–2390 (2015).
  • Liu S , ChengK , ZhangHet al. Methylation status of the Nanog promoter determines the switch between cancer cells and cancer stem cells. Adv. Sci. (Weinh).7(5), 1903035 (2020).
  • Du W , ElementoO. Cancer systems biology: embracing complexity to develop better anticancer therapeutic strategies. Oncogene34(25), 3215–3225 (2015).
  • Salgia R , KulkarniP. The genetic/non-genetic duality of drug ‘resistance’ in cancer. Trends. Cancer4(2), 110–118 (2018).
  • Ruwali M , ShuklaR. Interactions of environmental risk factors and genetic variations: association with susceptibility to cancer. In: Environmental Microbiology and Biotechnology.SinghA, SrivastavaS, RathoreD, PantD ( Eds). Springer, Singapore (2021).
  • Rasti A , MehrazmaM , MadjdZ , AbolhasaniM , SaeednejadZanjani L , AsgariM. Co-expression of cancer stem cell markers OCT4 and NANOG predicts poor prognosis in renal cell carcinomas. Sci. Rep.8(1), 11739 (2018).
  • Ma Y , YuW , ShrivastavaAet al. Sanguinarine inhibits pancreatic cancer stem cell characteristics by inducing oxidative stress and suppressing Sonic Hedgehog-Gli-Nanog pathway. Carcinogenesis38(10), 1047–1056 (2017).
  • Tan P , XuY , DuYet al. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell. Death. Dis.10(11), 794 (2019).
  • Yoon C , LuJ , YiBCet al. PI3K/Akt pathway and NANOG maintain cancer stem cells in sarcomas. Oncogenesis10(1), 12 (2021).
  • Lu G , LiY , MaYet al. Long non-coding RNA LINC00511 contributes to breast cancer tumourigenesis and stemness by inducing the miR-185-3p/E2F1/NANOG axis. J. Exp. Clin. Cancer Res.37(1), 289 (2018).
  • Thiagarajan PS , SinyukM , TuragaSMet al. Cx26 drives self-renewal in triple-negative breast cancer via interaction with NANOG and focal adhesion kinase. Nat. Commun.9(1), 578 (2018).
  • Khosravi A , JafariSM , AsadiJ. Knockdown of TAZ decrease the cancer stem properties of ESCC cell line YM-1 by modulation of NANOG, OCT-4 and SOX2. Gene769, 145207 (2021).
  • Hasan S , TahaR , OmriHE. Current opinions on chemoresistance: an overview. Bioinformation14(2), 80–85 (2018).
  • Kumar B , YadavA , LangJC , TeknosTN , KumarP. Suberoylanilide hydroxamic acid (SAHA) reverses chemoresistance in head and neck cancer cells by targeting cancer stem cells via the downregulation of NANOG. Genes Cancer6(3–4), 169–181 (2015).
  • Zhan W , LiaoX , LiuJ , TianT , YuL , LiR. USP38 regulates the stemness and chemoresistance of human colorectal cancer via regulation of HDAC3. Oncogenesis9(5), 48 (2020).
  • Liu D , ZhangXX , LiMCet al. C/EBPβ enhances platinum resistance of ovarian cancer cells by reprogramming H3K79 methylation. Nat. Commun.9(1), 1739 (2018).
  • Ramadoss S , SenS , RamachandranI , RoyS , ChaudhuriG , Farias-EisnerR. Lysine-specific demethylase KDM3A regulates ovarian cancer stemness and chemoresistance. Oncogene36(11), 1537–1545 (2017).
  • Shriwas O , PriyadarshiniM , SamalSKet al. DDX3 modulates cisplatin resistance in OSCC through ALKBH5-mediated m6A-demethylation of FOXM1 and NANOG. Apoptosis25(3–4), 233–246 (2020).
  • Lawrence M , TheunissenTW , LombardP , AdamsDJ , SilvaJCR. ZMYM2 inhibits NANOG-mediated reprogramming. Wellcome Open Res.4, 88 (2019).
  • Adams GE , ChandruA , CowleySM. Co-repressor, coactivator and general transcription factor: the many faces of the Sin3 histone deacetylase (HDAC) complex. Biochem. J.475(24), 3921–3932 (2018).
  • Lee J , MolleyTG , SewardCHet al. Geometric regulation of histone state directs melanoma reprogramming. Commun. Biol.3(1), 341 (2020).
  • Wang X , ZhangH , ChenX. Non-genetic mechanisms of therapeutic resistance in cancer. Cancer Drug Resist.2, 141–160 (2019).
  • Marine JC , DawsonSJ , DawsonMA. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer20(12), 743–756 (2020).
  • Bell CC , GilanO. Principles and mechanisms of non-genetic resistance in cancer. Br. J. Cancer122(4), 465–472 (2020).
  • Wu D , YanY , WeiTet al. An acetyl-histone vulnerability in PI3K/AKT inhibition-resistant cancers is targetable by both BET and HDAC inhibitors. Cell Rep.34(7), 108744 (2021).
  • Iglesias JM , GumuzioJ , MartinAG. Linking pluripotency reprogramming and cancer. Stem Cells Transl. Med.6(2), 335–339 (2017).
  • Nathansen J , LukiyanchukV , HeinLet al. Oct4 confers stemness and radioresistance to head and neck squamous cell carcinoma by regulating the homologous recombination factors PSMC3IP and RAD54L. Oncogene40(24), 4214–4228 (2021).
  • Lopez-Bertoni H , KotchetkovIS , MihelsonNet al. A SOX2: miR-486-5p axis regulates survival of GBM cells by inhibiting tumor suppressor networks. Cancer Res.80(8), 1644–1655 (2020).
  • Madden SK , de AraujoAD , GerhardtM , FairlieDP , MasonJM. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-MYC. Mol. Cancer20(1), 3 (2021).
  • Qi XT , LiYL , ZhangYQet al. KLF4 functions as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells. Acta Pharmacol. Sin.40(4), 546–555 (2019).
  • Xiong S , FengY , ChengL. Cellular reprogramming as a therapeutic target in cancer. Trends Cell Biol.29(8), 623–634 (2019).
  • Zhang W , SuiY , NiJ , YangT. Insights into the Nanog gene: a propeller for stemness in primitive stem cells. Int. J. Biol. Sci.12(11), 1372–1381 (2016).
  • Palla AR , PiazzollaD , AlcazarNet al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Sci. Rep.5, 10205 (2015).
  • Piazzolla D , PallaAR , PantojaCet al. Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat. Commun.5, 4226 (2014).
  • Page RL , AmbadyS , HolmesWFet al. Induction of stem cell gene expression in adult human fibroblasts without transgenes. Cloning Stem Cells.11(3), 417–426 (2009).
  • Xiong S , WangR , ChenQet al. Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. Am. J. Cancer Res.8(2), 302–316 (2018).
  • Heidari F , RafatiP , NematiF. Evaluation of DKK1 and NANOG genes expression as prognostic biomarkers in Iranian women with breast cancer. Asian J. Med. Principles Clin. Pract.2(1), 1–8 (2019).
  • Gong S , LiQ , JeterCR , FanQ , TangDG , LiuB. Regulation of NANOG in cancer cells. Mol. Carcinog.54(9), 679–687 (2015).
  • Mahalaxmi I , DeviSM , KaavyaJ , ArulN , BalachandarV , SanthyKS. New insight into NANOG: a novel therapeutic target for ovarian cancer (OC). Eur. J. Pharmacol.852, 51–57 (2019).
  • Guo Y . The evolution of NANOGP8 and its possible roles in tumorigenesis [abstract]. Presented at: Proceedings of the Annual Meeting of the American Association for Cancer Research. PA, USA, 27–29 April & 22–24 June 2020 ( Abstract 176).
  • Ishiguro T , SatoA , OhataH , SakaiH , NakagamaH , OkamotoK. Differential expression of NANOG1 and NANOGP8 in colon cancer cells. Biochem. Biophys. Res. Commun.418(2), 199–204 (2012).
  • Arai H , BacaY , XiuJ , BattaglinF , HwangJ , MarshallJLet al. Gene expression of NANOG and NANOGP8 in colorectal cancer. Ann. Oncol.32(Suppl. 5), S571 (2021).
  • Jeter CR , LiuB , LiuXet al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene30(36), 3833–3845 (2011).
  • Kawamura N , NimuraK , NaganoH , YamaguchiS , NonomuraN , KanedaY. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget6(26), 22361–22374 (2015).
  • Zhang K , FowlerM , GlassJ , YinH. Activated 5′ flanking region of NANOGP8 in a self-renewal environment is associated with increased sphere formation and tumor growth of prostate cancer cells. Prostate74(4), 381–394 (2014).
  • Li L , FengR , FeiSet al. NANOGP8 expression regulates gastric cancer cell progression by transactivating DBC1 in gastric cancer MKN-45 cells. Oncol. Lett.17(1), 555–563 (2019).
  • Gawlik-Rzemieniewska N , GalilejczykA , KrawczykM , BednarekI. Silencing expression of the NANOG gene and changes in migration and metastasis of urinary bladder cancer cells. Arch. Med. Sci.12(4), 889–897 (2016).
  • Eberle I , PlessB , BraunM , DingermannT , MarschalekR. Transcriptional properties of human NANOG1 and NANOG2 in acute leukemic cells. Nucleic Acids Res.38(16), 5384–5395 (2010).
  • Skvortsova K , Masle-FarquharE , LuuPLet al. DNA hypermethylation encroachment at CpG island borders in cancer is predisposed by H3K4 monomethylation patterns. Cancer. Cell35(2), 297–314.e8 (2019).
  • Pajares MJ , Palanca-BallesterC , UrtasunR , Alemany-CosmeE , LahozA , SandovalJ. Methods for analysis of specific DNA methylation status. Methods187, 3–12 (2021).
  • Xue H , LiuF , AiZet al. FOXC1 downregulates NANOG expression by recruiting HDAC2 to its promoter in F9 cells treated by retinoic acid. Int. J. Mol. Sci.22(5), 2255 (2021).
  • Zhang C , SamantaD , LuHet al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m-A-demethylation of NANOG mRNA. Proc. Natl Acad. Sci. USA113(14), E2047–E2056 (2016).
  • Jiang Y , WanY , GongM , ZhouS , QiuJ , ChengW. RNA demethylase ALKBH5 promotes ovarian carcinogenesis in a simulated tumour microenvironment through stimulating NF-κB pathway. J. Cell. Mol. Med.24(11), 6137–6148 (2020).
  • Gkountela S , Castro-GinerF , SzczerbaBMet al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell176(1–2), 98–112.e14 (2019).
  • Caslini C , HongS , BanYJ , ChenXS , InceTA. HDAC7 regulates histone 3 lysine 27 acetylation and transcriptional activity at super-enhancer-associated genes in breast cancer stem cells. Oncogene38(39), 6599–6614 (2019).
  • Wang H , FengW , ChenWet al. Methyl-CpG-binding domain 3 inhibits stemness of pancreatic cancer cells via Hippo signaling. Exp. Cell Res.393(1), 112091 (2020).
  • Peiffer DS , WyattD , ZlobinAet al. DAXX suppresses tumor-initiating cells in estrogen receptor-positive breast cancer following endocrine therapy. Cancer Res.79(19), 4965–4977 (2019).
  • Baroni T , AratoI , MancusoF , CalafioreR , LucaG. On the origin of testicular germ cell tumors: from gonocytes to testicular cancer. Front. Endocrinol. (Lausanne)10, 343 (2019).
  • Liu QQ , LiCM , FuLNet al. Enterotoxigenic Bacteroides fragilis induces the stemness in colorectal cancer via upregulating histone demethylase JMJD2B. Gut Microbes12(1), 1788900 (2020).
  • Wu DM , ZhengZH , ZhangYBet al. Down-regulated lncRNA DLX6-AS1 inhibits tumorigenesis through STAT3 signaling pathway by suppressing CADM1 promoter methylation in liver cancer stem cells. J. Exp. Clin. Cancer Res.38(1), 237 (2019).
  • Osuna LMA , Garcia-LopezJ , ElAyachi Iet al. Activation of estrogen receptor alpha by decitabine inhibits osteosarcoma growth and metastasis. Cancer Res.79(6), 1054–1068 (2019).
  • Ooki A , DinalankaraW , MarchionniLet al. Epigenetically regulated PAX6 drives cancer cells toward a stem-like state via GLI–SOX2 signaling axis in lung adenocarcinoma. Oncogene37(45), 5967–5981 (2018).
  • Wang X , JinJ , WanFet al. AMPK promotes SPOP-mediated NANOG degradation to regulate prostate cancer cell stemness. Dev. Cell48(3), 345–360.e7 (2019).
  • Runtu F , HardianyNS. Role of NANOG in glioma malignancy development and potential as therapeutic target. Biomed. Rev.31, 41–42 (2020).
  • Ho B , OlsonG , FigelS , GelmanI , CanceWG , GolubovskayaVM. NANOG increases focal adhesion kinase (FAK) promoter activity and expression and directly binds to FAK protein to be phosphorylated. J. Biol. Chem.287(22), 18656–18673 (2012).
  • Xie X , PiaoL , CaveyGSet al. Phosphorylation of NANOG is essential to regulate Bmi1 and promote tumorigenesis. Oncogene33(16), 2040–2052 (2014).
  • Bourguignon LY , EarleC , WongG , SpevakCC , KruegerK. Stem cell marker (Nanog) and Stat-3 signaling promote microRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene31(2), 149–160 (2012).
  • Wong OG , CheungAN. Stem cell transcription factor NANOG in cancers – is eternal youth a curse?. Expert. Opin. Ther. Targets20(4), 407–417 (2016).
  • Cao J , ZhaoM , LiuJet al. RACK1 promotes self-renewal and chemoresistance of cancer stem cells in human hepatocellular carcinoma through stabilizing NANOG. Theranostics9(3), 811–828 (2019).
  • Ma X , WangB , WangX , LuoY , FanW. NANOGP8 is the key regulator of stemness, EMT, Wnt pathway, chemoresistance, and other malignant phenotypes in gastric cancer cells. PLoS ONE13(4), e0192436 (2018).
  • Wang R , BhattacharyaR , YeXet al. Endothelial cells activate the cancer stem cell-associated NANOGP8 pathway in colorectal cancer cells in a paracrine fashion. Mol. Oncol.11(8), 1023–1034 (2017).
  • Schech A , KaziA , YuS , ShahP , SabnisG. Histone deacetylase inhibitor entinostat inhibits tumor-initiating cells in triple-negative breast cancer cells. Mol. Cancer Ther.14(8), 1848–1857 (2015).
  • Zhang Z , QiuN , YinJet al. SRGN crosstalks with YAP to maintain chemoresistance and stemness in breast cancer cells by modulating HDAC2 expression. Theranostics10(10), 4290–4307 (2020).
  • Ding Y , YuAQ , LiCL , FangJ , ZengY , LiDS. TALEN-mediated NANOG disruption results in less invasiveness, more chemosensitivity and reversal of EMT in HeLa cells. Oncotarget5(18), 8393–8401 (2014).
  • Khosravi N , ShahgoliVK , AminiMet al. Suppression of NANOG inhibited cell migration and increased the sensitivity of colorectal cancer cells to 5-fluorouracil. Eur. J. Pharmacol.894, 173871 (2021).
  • Kuciak M , MasC , BorgesI , Sánchez-GómezP , RuizI , AltabaA. Chimeric NANOG repressors inhibit glioblastoma growth in vivo in a context-dependent manner. Sci. Rep.9(1), 3891 (2019).
  • Ebeid SA , El-MoneimNAA , GhoneimHEM , El-BenhawySA , IsmailSE. Combination of doxorubicin and berberine generated synergistic anticancer effect on breast cancer cells through down-regulation of NANOG and miRNA-21 gene expression. Middle East J. Cancer11(3), 273–285 (2020).
  • Ahn YT , KimMS , KimYS , AnWG. Astaxanthin reduces stemness markers in BT20 and T47D breast cancer stem cells by inhibiting expression of pontin and mutant p53. Mar. Drugs18(11), 577 (2020).
  • Liu S , ChengK , ZhangHet al. Methylation status of the NANOG promoter determines the switch between cancer cells and cancer stem cells. Adv. Sci. (Weinh).7(5), 1903035 (2020).
  • La Noce M , PainoF , MeleLet al. HDAC2 depletion promotes osteosarcoma’s stemness both in vitro and in vivo: a study on a putative new target for CSCs directed therapy. J. Exp. Clin. Cancer Res.37(1), 296 (2018).
  • Cai MH , XuXG , YanSLet al. Depletion of HDAC1, 7 and 8 by histone deacetylase inhibition confers elimination of pancreatic cancer stem cells in combination with gemcitabine. Sci. Rep.8(1), 1621 (2018).
  • Zagorac S , AlcalaS , FernandezBayon Get al. DNMT1 inhibition reprograms pancreatic cancer stem cells via upregulation of the miR-17-92 cluster. Cancer Res.76(15), 4546–4558 (2016).
  • Meng F , SunG , ZhongM , YuY , BrewerMA. Anticancer efficacy of cisplatin and trichostatin A or 5-aza-2′-deoxycytidine on ovarian cancer. Br. J. Cancer108(3), 579–586 (2013).
  • Pu F , ChenF , ShaoZ. MicroRNAs as biomarkers in the diagnosis and treatment of chondrosarcoma. Tumour Biol. doi:10.1007/s13277-016-5468-1 (2016) ( Epub ahead of print).
  • Ramezankhani B , TahaMF , JaveriA. Vitamin C counteracts miR-302/367-induced reprogramming of human breast cancer cells and restores their invasive and proliferative capacity. J. Cell. Physiol.234(3), 2672–2682 (2019).
  • Lobo J , CardosoAR , Miranda-GonçalvesVet al. Targeting germ cell tumors with the newly synthesized flavanone-derived compound MLo1302 efficiently reduces tumor cell viability and induces apoptosis and cell cycle arrest. Pharmaceutics13(1), 73 (2021).
  • Ramakrishna S , SureshB , LimKHet al. PEST motif sequence regulating human NANOG for proteasomal degradation. Stem Cells Dev.20(9), 1511–1519 (2011).
  • Mullin NP , VargheseJ , ColbyD , RichardsonJM , FindlayGM , ChambersI. Phosphorylation of NANOG by casein kinase I regulates embryonic stem cell self-renewal. FEBS Lett.595(1), 14–25 (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.