218
Views
0
CrossRef citations to date
0
Altmetric
Review

Leveraging Epigenetics to Enhance the Efficacy of Cancer-Testis Antigen: A Potential Candidate for Immunotherapy

ORCID Icon, ORCID Icon, ORCID Icon, , , , , , , & ORCID Icon show all
Pages 865-886 | Received 21 Nov 2021, Accepted 16 Jun 2022, Published online: 25 Jul 2022

References

  • Siegel RL , MillerKD , JemalA. Cancer statistics. CA Cancer J. Clin.70(1), 7–30 (2020).
  • Shabir S , GillPK. Global scenario on ovarian cancer – its dynamics, relative survival, treatment, and epidemiology, 2020. Adesh Univ. J. Med. Sci. Res.2(1), 17–25 (2020).
  • Torre LA , BrittonTrabert , DesantisCEet al. Ovarian cancer statistics, 2018. CA Cancer J. Clin.68, 284–296 (2018).
  • Du Bois A , ReussA , Pujade-LauraineEet al. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d’Investigateurs Nationaux Pour les Etudes des Cancers de l’Ovaire (GINECO). Cancer J.115(6), 1234–1244 (2009).
  • ‘National Comprehensive Cancer Network – Home’. www.nccn.org/
  • Winter-Roach BA , KitchenerHC , LawrieTA. Adjuvant (post-surgery) chemotherapy for early stage epithelial ovarian cancer. Cochrane Database Syst. Rev. (3), (2009).
  • Li Y , LiJ , WangY , ZhangYet al. Roles of cancer/testis antigens (CTAs) in breast cancer. Cancer Lett.399, 64–73 (2017).
  • Salmaninejad A , ZamaniMR , PourvahediMet al. Cancer/testis antigens: expression, regulation, tumor invasion, and use in immunotherapy of cancers. Immunol. Invest.45(7), 619–640 (2016).
  • Van der Bruggen P , TraversariC , ChomezPet al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science254(5038), 1643–1647 (1991).
  • Mantia-Smaldone GM , CorrB , ChuCS. Immunotherapy in ovarian cancer. Hum. Vaccin. Immunother.8(9), 1179–1191 (2012).
  • Sabado RL , BalanS , BhardwajN. Dendritic cell-based immunotherapy. Cell Res.27(1), 74–95 (2017).
  • Strickler JH , HanksBA , KhasrawM. Tumor mutational burden as a predictor of immunotherapy response: is more always better?Clin. Cancer Res.27(5), 1236–1241 (2021).
  • Li XF , RenP , ShenWZ , JinXet al. The expression, modulation and use of cancer-testis antigens as potential biomarkers for cancer immunotherapy. Am. J. Transl. Res.12(11), 7002–7019 (2020).
  • Elisabetta F , SandraCet al. The biology of cancer testis antigens: putative function, regulation and therapeutic potential. Mol. Oncol.5(2), 164–182 (2011).
  • Kim JJ , RajagopalanK , HussainBet al. CETN1 is a cancer testis antigen with expression in prostate and pancreatic cancers. Biomark. Res.1(1), 1–7 (2013).
  • Dang E , YangS , SongCet al. BAP31, a newly defined cancer/testis antigen, regulates proliferation, migration, and invasion to promote cervical cancer progression. Cell Death Dis.9(8), 1–15 (2018).
  • Anne Westbrook V , DiekmanAB , Naaby-HansenSet al. Differential nuclear localization of the cancer/testis-associated protein, SPAN-X/CTp11, in transfected cells and in 50% of human spermatozoa. Biol. Reprod.64(1), 345–358 (2001).
  • Salmaninejad A , ZamaniMR , PourvahediMet al. Cancer/testis antigen expression in human mesenchymal stem cells: down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cancer Res.65(6), 2207–2215 (2005).
  • Sharma A , AlbahraniM , ZhangWet al. Epigenetic activation of POTE genes in ovarian cancer. Epigenetics14(2), 185–197 (2019).
  • Kulkarni P , UverskyVNet al. Cancer/testis antigens: “smart” biomarkers for diagnosis and prognosis of prostate and other cancers. Int. J. Mol. Sci.18(4), 740 (2017).
  • Carvalho F , VettoreALet al. Cancer/testis antigen MAGE-C1/CT7: new target for multiple myeloma therapy. Clin. Dev. Immunol.2012, 1–7 (2012).
  • Babatunde KA , NajafiA , SalehipourPet al. Cancer/Testis genes in relation to sperm biology and function. Iran. J. Basic Med. Sci.20(9), 967 (2017).
  • Xie K , FuC , WangSet al. Cancer-testis antigens in ovarian cancer: implication for biomarkers and therapeutic targets. J. Ovarian Res.12(1), (2019).
  • Peoples GE , AndersonBW , FiskBet al. Ovarian cancer-associated lymphocyte recognition of folate binding protein peptides. Ann. Surg. Oncol.5(8), 743–750 (1998).
  • Caballero OL , ChenYT. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci.100(11), 2014–2021 (2009).
  • Zendman AJ , RuiterDJ , Van MuijenGN. Cancer/testis-associated genes: identification, expression profile, and putative function. J. Cell. Physiol.194(3), 272–288 (2003).
  • Neumann F , WagnerC , PreussKDet al. Identification of an epitope derived from the cancer testis antigen HOM-TES-14/SCP1 and presented by dendritic cells to circulating CD4+ T cells. Blood106(9), 3105–3113 (2005).
  • Figueiredo DL , MamedeRC , SpagnoliGCet al. High expression of cancer testis antigens MAGE-A, MAGE-C1/CT7, MAGE-C2/CT10, NY-ESO-1, and gage in advanced squamous cell carcinoma of the larynx. Head Neck33(5), 702–707 (2011).
  • Oi S , NatsumeA , ItoMet al. Synergistic induction of NY-ESO-1 antigen expression by a novel histone deacetylase inhibitor, valproic acid, with 5-aza-2′-deoxycytidine in glioma cells. J. Neurooncol.92(1), 15–22 (2009).
  • Daudi S , EngKH , Mhawech-FaucegliaPet al. Expression and immune responses to MAGE antigens predict survival in epithelial ovarian cancer. PLOS ONE9(8), (2014).
  • Zhang XM , HuangY , LiZSet al. Prediction and analysis of HLA-A2/A24-restricted cytotoxic T-lymphocyte epitopes of the tumor antigen MAGE-n using the artificial neural networks method on NetCTL1.2 Server. Oncol. Lett.1(6), 1097–1100 (2010).
  • Zhang Y , WangZ , ZhangJet al. Core promoter sequence of SEMG I spans between the two putative GATA-1 binding domains and is responsive to IL-4 and IL-6 in myeloma cells. Leuk. Res.33(1), 166–169 (2009).
  • Almanzar G , OlkhanudPB , BodogaiMet al. Sperm-derived SPANX-B is a clinically relevant tumor antigen that is expressed in human tumors and readily recognized by human CD4+ and CD8+ T cells. Clin. Cancer Res.15(6), 1954–1963 (2009).
  • Neesse A , GangeswaranR , LuettgesJet al. Sperm-associated antigen 1 is expressed early in pancreatic tumorigenesis and promotes motility of cancer cells. Oncogene26(11), 1533–1545 (2007).
  • Devor EJ , Gonzalez-BosquetJ , WarrierAet al. p53 mutation status is a primary determinant of placenta-specific protein 1 expression in serous ovarian cancers. Int. J. Oncol.50(5), 1721 (2017).
  • Hayashi R , NagatoT , KumaiTet al. Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. Oncoimmunology10(1), (2021).
  • Wischnewski F , FrieseO , PantelKet al. Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters. Mol. Cancer Res.5(7), 749–759 (2007).
  • Shichijo S , YamadaA , SagawaKet al. Induction of MAGE genes in lymphoid cells by the demethylating agent 5-aza-2′-deoxycytidine. Jpn J. Cancer Res.87(7), 751–756 (1996).
  • Sun F , ChanE , WuZet al. Combinatorial pharmacologic approaches target EZH2-mediated gene repression in breast cancer cells. Mol. Cancer Ther.8(12), 3191–3202 (2009).
  • Chang C , LeeSO , WangRSet al. Hormone control and expression of androgen receptor coregulator MAGE-11 in human endometrium during the window of receptivity to embryo implantation. Mol. Hum. Reprod.14(2), 107–116 (2008).
  • Zhu X , AsaSL , EzzatS. Fibroblast growth factor 2 and estrogen control the balance of histone 3 modifications targeting MAGE-A3 in pituitary neoplasia. Clin. Cancer Res.14(7), 1984–1996 (2008).
  • Drakes ML , StiffPJ. Understanding dendritic cell immunotherapy in ovarian cancer. Expert Rev. Anticancer Ther.16(6), 643–652 (2016).
  • Hofmann M , RuschenburgI. mRNA detection of tumor-rejection genes BAGE, GAGE, and MAGE in peritoneal fluid from patients with ovarian carcinoma as a potential diagnostic tool. Cancer Cytopathol.96(3), 187–193 (2002).
  • Zendman AJ , van KraatsAA , den HollanderAIet al. Characterization of XAGE-1b, a short major transcript of cancer/testis-associated gene XAGE-1, induced in melanoma metastasis. Int. J. Cancer97(2), 195–204 (2002).
  • Simpson AJ , CaballeroOL , JungbluthAet al. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer5(8), 615–625 (2005).
  • Dong XY , SuYR , QianXPet al. Identification of two novel CT antigens and their capacity to elicit antibody response in hepatocellular carcinoma patients. Br. J. Cancer89(2), 291–297 (2003).
  • Xin HW , AmbeCM , HariDMet al. Label-retaining liver cancer cells are relatively resistant to sorafenib. Gut62(12), 1777–1786 (2013).
  • Slebos RJC , YiY , ElyKet al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin. Cancer Res.12(3), 701–709 (2006).
  • Loriot A , BoonT , DeSmet C. Five new human cancer-germline genes identified among 12 genes expressed in spermatogonia. Int. J. Cancer105(3), 371–376 (2003).
  • Liggins AP , LimSH , SoilleuxEJet al. A panel of cancer-testis genes exhibiting broad-spectrum expression in haematological malignancies. Cancer Immun. a J. Acad. Cancer Immunol.10, 1–12 (2010).
  • Moreau-Aubry A , LeGuiner S , LabarriereNet al. A processed pseudogene codes for a new antigen recognized by a CD8(+) T cell clone on melanoma. J. Exp. Med.191(9), 1617–1623 (2000).
  • Debinski W , GiboDM. Molecular expression analysis of restrictive receptor for interleukin 13, a brain tumor-associated cancer/testis antigen. Mol. Med.6(5), 440 (2000).
  • Lin C , MakS , MeitnerPAet al. Cancer/testis antigen CSAGE is concurrently expressed with MAGE in chondrosarcoma. Gene285(1–2), 269–278 (2002).
  • Cho B , LimY , LeeDYet al. Identification and characterization of a novel cancer/testis antigen gene CAGE. Biochem. Biophys. Res. Commun.292(3), 715–726 (2002).
  • Lee S-Y , ObataY , YoshidaMet al. Immunomic analysis of human sarcoma. Proc. Natl Acad. Sci.100(5), 2651–2656 (2003).
  • Chen QW , ZhuXY , LiYYet al. Epigenetic regulation and cancer (review). Oncol. Rep.31(2), 523–532 (2014).
  • Wang D , WangXW , PengXCet al. CRISPR/Cas9 genome editing technology significantly accelerated herpes simplex virus research. Cancer Gene Ther.25(5–6), 93–105 (2018).
  • Liu Y , YuC , WuYet al. CD44 + fibroblasts increases breast cancer cell survival and drug resistance via IGF2BP3-CD44-IGF2 signalling. J. Cell. Mol. Med.21(9), 1979–1988 (2017).
  • Mobasheri MB , JahanzadI , MohagheghiMAet al. Expression of two testis-specific genes, TSGA10 and SYCP3, in different cancers regarding to their pathological features. Cancer Detect. Prev.31(4), 296–302 (2007).
  • Kamerkar S , LeBleuVS , SugimotoHet al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature546(7659), 498–503 (2017).
  • Ruault M , vander Bruggen P , BrunM-Eet al. New BAGE (B melanoma antigen) genes mapping to the juxtacentromeric regions of human chromosomes 13 and 21 have a cancer/testis expression profile. Eur. J. Hum. Genet.10(12), 833–840 (2002).
  • Constantino J , GomesC , FalcaoAet al. Dendritic cell-based immunotherapy: a basic review and recent advances. Immunol. Res.65(4), 798–810 (2017).
  • Zhou Y , BoschML , SalgallerML. Current methods for loading dendritic cells with tumor antigen for the induction of anti-tumor immunity. J. Immunother.25(4), 289–303 (2002).
  • Tangjitgamol S , ManusirivithayaS , LaopaiboonMet al. Interval debulking surgery for advanced epithelial ovarian cancer. Cochrane Database Syst. Rev.4(4), CD006014 (2013).
  • Alsaab HO , SauS , AlzhraniRet al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front. Pharmacol.8(Aug), (2017).
  • Ribas A , DummerR , PuzanovIet al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell170(6), 1109–1119.e10 (2017).
  • Tammela J , UenakaA , OnoTet al. OY-TES-1 expression and serum immunoreactivity in epithelial ovarian cancer. Int. J. Oncol.29(4), 903–910 (2006).
  • Fan R , HuangW , LuoBet al. Cancer testis antigen OY-TES-1: analysis of protein expression in ovarian cancer with tissue microarrays. Eur. J. Gynaecol. Oncol.36(3), 298–303 (2015).
  • Tammela J , UenakaA , OnoTet al. OY-TES-1 expression and serum immunoreactivity in epithelial ovarian cancer. Int. J. Oncol.29(4), 903–910 (2006).
  • Matsuda T , LeisegangM , ParkJHet al. Induction of neoantigen-specific cytotoxic T cells and construction of T-cell receptor-engineered T cells for ovarian cancer. Clin. Cancer Res.24(21), 5357–5367 (2018).
  • Woloszynska-Read A , ZhangW , YuJet al. Coordinated cancer germline antigen promoter and global DNA hypomethylation in ovarian cancer: association with the BORIS/CTCF expression ratio and advanced stage. Clin. Cancer Res.17(8), 2170–2180 (2011).
  • Renaud S , PugachevaEM , DelgadoMDet al. Expression of the CTCF-paralogous cancer-testis gene, brother of the regulator of imprinted sites (BORIS), is regulated by three alternative promoters modulated by CpG methylation and by CTCF and p53 transcription factors. Nucleic Acids Res.35(21), 7372–7388 (2007).
  • Jones BS , LambLS , GoldmanFet al. Improving the safety of cell therapy products by suicide gene transfer. Front. Pharmacol.0, 254 (2014).
  • Chodon T , LugadeAA , BattagliaS , OdunsiK. Emerging role and future directions of immunotherapy in advanced ovarian cancer. Hematol. Oncol. Clin. North Am.32(6), 1025 (2018).
  • Inoue N , HessKD , MoreadithRWet al. New gene family defined by MORC, a nuclear protein required for mouse spermatogenesis. Hum. Mol. Genet.8(7), 1201–1207 (1999).
  • Scanlan MJ , SimpsonAJ , OldLJ. The cancer/testis genes: review, standardization, and commentary. Cancer Immun.4 (2004).
  • ‘NCBI Insights: NCBI to Retire the UniGene Database’. https://ncbiinsights.ncbi.nlm.nih.gov/2019/02/01/ncbi-to-retire-the-unigene-database/
  • Scanlan MJ , AltorkiNK , GureAOet al. Expression of cancer-testis antigens in lung cancer: definition of bromodomain testis-specific gene (BRDT) as a new CT gene, CT9. Cancer Lett.150(2), 155–164 (2000).
  • Dong XY , SuYR , QianXPet al. Identification of two novel CT antigens and their capacity to elicit antibody response in hepatocellular carcinoma patients. Br. J. Cancer89(2), 291–297 (2003).
  • Atanackovic D , ArfstenJ , CaoYet al. Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood109(3), 1103–1112 (2007).
  • Kratzschmar J , HaendlerB , EberspaecherUet al. The human cysteine-rich secretory protein (CRISP) family. Primary structure and tissue distribution of CRISP-1, CRISP-2 and CRISP-3. Eur. J. Biochem.236(3), 827–836 (1996).
  • Loriot A , BoonT , DeSmet C. Five new human cancer-germline genes identified among 12 genes expressed in spermatogonia. Int. J. Cancer105(3), 371–376 (2003).
  • Sulek J , GoliadzeE , ZhouSet al. The expression of cancer/testis antigens in kidney and bladder malignancies. Arch. Med.8(2), (2016).
  • Taguchi A , TaylorAD , RodriguezJet al. A search for novel cancer/testis antigens in lung cancer identifies VCX/Y genes, expanding the repertoire of potential immunotherapeutic targets. Cancer Res.74(17), 4694–4705 (2014).
  • Scanlan MJ , GordonCM , WilliamsonBet al. Identification of cancer/testis genes by database mining and mRNA expression analysis. Int. J. Cancer98(4), 485–492 (2002).
  • Shan J , YuanL , XiaoQet al. TSP50, a possible protease in human testes, is activated in breast cancer epithelial cells 1. Cancer Res.62, 290–294 (2002).
  • Eichmüller S , UsenerD , DummerRet al. Serological detection of cutaneous T-cell lymphoma-associated antigens. Proc. Natl Acad. Sci. USA98(2), 629 (2001).
  • De Jong A , BuchliR , RobbinsD. Characterization of sperm protein 17 in human somatic and neoplastic tissue. Cancer Lett.186(2), 201–209 (2002).
  • De Wit NJ , WeidleUH , RuiterDJet al. Expression profiling of MMA-1a and splice variant MMA-1b: new cancer/testis antigens identified in human melanoma. Int. J. Cancer98(4), 547–553 (2002).
  • Takimoto M , WeiG , Dosaka-AkitaHet al. Frequent expression of new cancer/testis gene D40/AF15q14 in lung cancers of smokers. Br. J. Cancer86(11), 1757–1762 (2002).
  • Madsen B , TarsounasM , BurchellJMet al. PLU-1, a transcriptional repressor and putative testis-cancer antigen, has a specific expression and localization pattern during meiosis. Chromosoma112(3), 124–132 (2003).
  • Koslowski M , ZlemO , ReciTet al. Multiple splice variants of lactate dehydrogenase C selectively expressed in human cancer. 1, 2 (2002).
  • Yamada R , TakahashiA , TorigoeTet al. Preferential expression of cancer/testis genes in cancer stem-like cells: proposal of a novel sub-category, cancer/testis/stem gene. Tissue Antigens81(6), 428–434 (2013).
  • Feichtinger J , LarcombeL , McFarlaneRJ. Meta-analysis of expression of l(3)MBT tumor-associated germline genes supports the model that a soma-to-germline transition is a hallmark of human cancers. Int. J. Cancer134(10), 2359–2365 (2014).
  • Gibbs ZA , WhitehurstAW. Emerging contributions of cancer/testis antigens to neoplastic behaviors 1. Trends in Cancer4(10), 710–712 (2018).
  • Yao J , CaballeroOL , YungWKAet al. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol. Res.2(4), 371 (2014).
  • Sigalotti L , CoralS , AltomonteMet al. Cancer testis antigens expression in mesothelioma: role of DNA methylation and bioimmunotherapeutic implications. Br. J. Cancer86(6), 979 (2002).
  • Li Y , SunL , ZhangYet al. The histone modifications governing TFF1 transcription mediated by estrogen receptor. J. Biol. Chem.286(16), 13925–13936 (2011).
  • Jit BP , QaziS , AryaR , SrivastavaA , GuptaN , SharmaA. An immune epigenetic insight to COVID-19 infection. Epigenomics13(06), 465–480 (2021).
  • Kundu S , RayMD , SharmaA. Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. J. Genet. Genomics48(3), 184–197 (2021).
  • Li B , CareyM , WorkmanJL. The role of chromatin during transcription. Cell128(4), 707–719 (2007).
  • Tachibana M , SugimotoK , NozakiMet al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev.16(14), 1779–1791 (2002).
  • Strahl BD , AllisCD. The language of covalent histone modifications. Nature403(6765), 41–45 (2000).
  • De Smet C , LurquinC , LethéBet al. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol. Cell. Biol.19(11), 7327–7335 (1999).
  • Link PA , GangisettyO , JamesSRet al. Distinct roles for histone methyltransferases G9a and GLP in cancer germ-line antigen gene regulation in human cancer cells and murine embryonic stem cells. Mol. Cancer Res.7(6), 851–862 (2009).
  • Janssen BL , vande Locht LT , FourkourAet al. Transcription of the MAGE-1 gene and the methylation status of its Ets binding promoter elements: a quantitative analysis in melanoma cell lines using a real-time polymerase chain reaction technique. Melanoma Res.9(3), 213–222 (1999).
  • Akers SN , OdunsiK , KarpfAR. Regulation of cancer germline antigen gene expression: implications for cancer immunotherapy. Future Oncol.6(5), 717–732 (2010).
  • Nguyen P , Bar-SelaG , SunLet al. BAT3 and SET1A form a complex with CTCFL/BORIS to modulate H3K4 histone dimethylation and gene expression. Mol. Cell. Biol.28(21), 6720–6729 (2008).
  • Roman-Gomez J , Jimenez-VelascoA , AgirreXet al. Epigenetic regulation of human cancer/testis antigen gene, HAGE, in chronic myeloid leukemia. Haematologica92(2), 153–162 (2007).
  • Link PA , ZhangW , OdunsiKet al. BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer. Cancer Immun.13(1), (2013).
  • Heinrich MC , BlankeCD , DrukerBJet al. Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J. Clin. Oncol.20(6), 1692–1703 (2002).
  • Kondo T , ZhuX , AsaSLet al. The cancer/testis antigen melanoma-associated antigen-A3/A6 is a novel target of fibroblast growth factor receptor 2-IIIb through histone H3 modifications in thyroid cancer. Clin. Cancer Res.13(16), 4713–4720 (2007).
  • Cheema Z , Hari-GuptaY , KitaG-Xet al. Expression of the cancer-testis antigen BORIS correlates with prostate cancer. Prostate74(2), 164–176 (2014).
  • Jagadish N , RanaR , SelviRet al. Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein. Biochem. J.389(Pt 1), 73 (2005).
  • Nguyen P , CuiH , BishtKSet al. CTCFL/BORIS is a methylation-independent DNA-binding protein that preferentially binds to the paternal H19 differentially methylated region. Cancer Res.68(14), 5546–5551 (2008).
  • Garg M , ChaurasiyaD , RanaRet al. Sperm-associated antigen 9, a novel cancer-testis antigen, is a potential target for immunotherapy in epithelial ovarian cancer. Clin. Cancer Res.13(5), 1421–1428 (2007).
  • Zhang Y , WangZ , ZhangJet al. Core promoter sequence of SEMG I spans between the two putative GATA-1 binding domains and is responsive to IL-4 and IL-6 in myeloma cells. Leuk. Res.33(1), 166 (2009).
  • Saito K , NishidaKM , MoriTet al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev.20(16), 2214 (2006).
  • Katahira J , YonedaY. Nucleocytoplasmic transport of microRNAs and related small RNAs. Traffic12(11), 1468–1474 (2011).
  • Saxe JP , LinH. Small noncoding RNAs in the germline. Cold Spring Harb. Perspect. Biol.3(9), 1–16 (2011).
  • Caballero OL , ChenY-T. Cancer/ testis (CT) antigens: potential targets forimmunotherapy. Innate Immune Regulations and Cancer Immune therapy.348–369 (2012).
  • Lim SL , RicciardelliC , OehlerMKet al. Overexpression of piRNA pathway genes in epithelial ovarian cancer. PLOS ONE9(6), e99687 (2014).
  • Taherian-Esfahani Z , Abedin-DoA , NikpayamEet al. Cancer-testis antigens: a novel group of tumor biomarkers in ovarian cancers. Iran. J. Cancer Prev.9(6), (2016).
  • Tchabo NE , Mhawech-FaucegliaP , CaballeroOLet al. Expression and serum immunoreactivity of developmentally restricted differentiation antigens in epithelial ovarian cancer. Cancer Immun. A. J. Acad. Cancer Immunol.9 (2009).
  • Jagadish N , FatimaR , SharmaAet al. Sperm associated antigen 9 (SPAG9) a promising therapeutic target of ovarian carcinoma. Tumour Biol.40(5), (2018).
  • Garg M , ChaurasiyaD , RanaRet al. Sperm-associated antigen 9, a novel cancer testis antigen, is a potential target for immunotherapy in epithelial ovarian cancer. Clinical Cancer Res.13(5), 1421–1428(2007).
  • Whitehurst AW , XieY , PurintonSCet al. Tumor antigen acrosin binding protein normalizes mitotic spindle function to promote cancer cell proliferation. Cancer Res.70(19), 7652–7661 (2010).
  • Liu Y , DouM , SongXet al. The emerging role of the piRNA/piwi complex in cancer. Mol. Cancer18(1), 1–15 (2019).
  • Odunsi K , JungbluthAA , StockertEet al. NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer 1. Cancer Res.63, 6076–6083 (2003).
  • Wang Y . Cancer immunity. 4, 11 (2004).
  • Xie K , FuC , WangSet al. Cancer-testis antigens in ovarian cancer: implication for biomarkers and therapeutic targets. J. Ovarian Res.12(1), 1–13 (2019).
  • Mobasheri MB , ModarressiMH , ShabaniMet al. Expression of the testis-specific gene, TSGA10, in Iranian patients with acute lymphoblastic leukemia (ALL). Leuk. Res.30(7), 883–889 (2006).
  • Martelange V , DeSmet C , DePlaen Eet al. Identification on a human sarcoma of two new genes with tumor-specific expression. Cancer Res.60, 3848–3855 (2000).
  • Tanaka R , OnoT , SatoSet al. Over-expression of the testis-specific gene TSGA10 in cancers and its immunogenicity. Microbiol. Immunol.48(4), 339–345 (2004).
  • Oram SW , LiuXX , LeeTLet al. TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells. BMC Cancer6(1), 1–15 (2006).
  • Sharma S , QianF , KeitzBet al. A-kinase anchoring protein 3 messenger RNA expression correlates with poor prognosis in epithelial ovarian cancer. Gynecol. Oncol.99(1), 183–188 (2005).
  • Van Baren N , BonnetMC , DrénoBet al. Tumoral and immunologic response after vaccination of melanoma patients with an ALVAC virus encoding MAGE antigens recognized by T cells. J. Clin. Oncol.23(35), 9008–9021 (2005).
  • Berzofsky JA , TerabeM , WoodLV. Strategies to use immune modulators in therapeutic vaccines against cancer. Semin. Oncol.39(3), 348–357 (2012).
  • Høgdall EV , ChristensenL , KjaerSKet al. Distribution of HER-2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the Danish MALOVA Ovarian Cancer Study. Cancer98(1), 66–73 (2003).
  • Karyampudi L , FormicolaC , ErskineCLet al. A degenerate HLA-DR epitope pool of HER-2/neu reveals a novel in vivo immunodominant epitope, HER-2/neu88-102. Clin. Cancer Res.16(3), 825–834 (2010).
  • Brown Jones M , NeuperC , ClaytonAet al. Rationale for folate receptor alpha targeted therapy in ‘high risk’ endometrial carcinomas. Int. J. Cancer123(7), 1699–1703 (2008).
  • Elnakat H , RatnamM. Role of folate receptor genes in reproduction and related cancers. Front. Biosci.11(1 P.447–888), 506–519 (2006).
  • Taherian-Esfahani Z , Abedin-DoA , NikpayamEet al. Cancer-testis antigens: a novel group of tumor biomarkers in ovarian cancers. Iran. J. Cancer Prev.9(6), (2016).
  • Schlienger K , ChuCS , WooEYet al. TRANCE- and CD40 ligand-matured dendritic cells reveal MHC class I-restricted T cells specific for autologous tumor in late-stage ovarian cancer patients. Clin. Cancer Res.9(4), 1517–1527 (2003).
  • James FR , Jiminez-LinanM , AlsopJ et al. Association between tumour infiltrating lymphocytes, histotype and clinical outcome in epithelial ovarian cancer. BMC Cancer17(1), 1–7 (2017).
  • Hwang C , LeeSJ , LeeJH et al. Stromal tumor-infiltrating lymphocytes evaluated on H&E-stained slides are an independent prognostic factor in epithelial ovarian cancer and ovarian serous carcinoma. Oncol. Lett.17(5), 4557–4565 (2019).
  • Toker A , NguyenLT , StoneSCet al. Regulatory T cells in ovarian cancer are characterized by a highly activated phenotype distinct from that in melanoma. Clin. Cancer Res.24(22), 5685–5696 (2018).
  • Cannistra SA . Cancer of the ovary. N. Engl. J. Med.351(24), 2519–2529 (2004).
  • Adams SF , LevineDA , CadungogMGet al. Intraepithelial T cells and tumor proliferation: impact on the benefit from surgical cytoreduction in advanced serous ovarian cancer. Cancer115(13), 2891–2902 (2009).
  • Clarke B , TinkerAV , LeeCHet al. Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss. Mod. Pathol.22(3), 393–402 (2009).
  • Adams SF , LevineDA , CadungogMGet al. Intraepithelial T cells and tumor proliferation. Cancer115(13), 2891–2902 (2009).
  • Woo EY , YehH , ChuCSet al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J. Immunol.168(9), 4272–4276 (2002).
  • Hwang WT , AdamsSF , TahirovicEet al. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol. Oncol.124(2), 192–198 (2012).
  • Zhang Y , ZhangY , ZhangL. Expression of cancer-testis antigens in esophageal cancer and their progress in immunotherapy. J. Cancer Res. Clin. Oncol.145(2), 281–291 (2019).
  • Robbins PF , MorganRA , FeldmanSAet al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol.29(7), 917–924 (2011).
  • Markert S , LassmannS , GabrielBet al. Alpha-folate receptor expression in epithelial ovarian carcinoma and non-neoplastic ovarian tissue. Anticancer Res.28(6A), 3567–3572 (2008).
  • Verri E , GuglielminiP , PuntoniMet al. HER2/neu oncoprotein overexpression in epithelial ovarian cancer: evaluation of its prevalence and prognostic significance. Clinical study. Oncology68(2–3), 154–161 (2005).
  • Lanitis E , SmithJB , DangajDet al. A human ErbB2-specific T-Cell receptor confers potent anti-tumor effector functions in genetically engineered primary cytotoxic lymphocytes. Hum. Gene Ther.25(8), 730 (2014).
  • Kershaw MH , WestwoodJA , ParkerLLet al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res.12(20 Pt 1), 6106–6115 (2006).
  • Siu MKY , KongDSH , ChanHYet al. Paradoxical impact of two folate receptors, FRα and RFC, in ovarian cancer: effect on cell proliferation, invasion and clinical outcome. PLOS ONE7(11), e47201 (2012).
  • Kandalaft LE , PowellDJJr , CoukosG. A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer. J. Transl. Med.10(1), 1–10 (2012).
  • Schoutrop E , El-SerafiI , PoiretTet al. Mesothelin-Specific CAR T cells target ovarian cancer. Cancer Res.81(11), 3022–3055 (2021).
  • Liu JF , MooreKN , BirrerMJet al. Phase I study of safety and pharmacokinetics of the anti-MUC16 antibody-drug conjugate DMUC5754A in patients with platinum-resistant ovarian cancer or unresectable pancreatic cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol.27(11), 2124–2130 (2016).
  • Chekmasova AA , RaoTD , NikhaminYet al. Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin. Cancer Res.16(14), 3594–3606 (2010).
  • Koneru M , O’CearbhaillR , PendharkarSet al. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cancer. J. Transl. Med.13(1), 1–11 (2015).
  • Akahori Y , WangL , YoneyamaMet al. Anti-tumor activity of CAR-T cells targeting the intracellular oncoprotein WT1 can be enhanced by vaccination. Blood132(11), 1134–1145 (2018).
  • Banchereau J , SteinmanRM. Dendritic cells and the control of immunity. Nature392(6673), 245–252 (1998).
  • Coosemans A , BaertT , VergoteI. A view on dendritic cell immunotherapy in ovarian cancer: how far have we come?Facts Views Vis. ObGyn.7(1), 73 (2015).
  • Hsu FJ , BenikeC , FagnoniFet al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med.2(1), 52–58 (1996).
  • Nestle FO , AlijagicS , GillietMet al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med.4(3), 328–332 (1998).
  • Whiteside TL , FerrisRL , SzczepanskiMet al. Dendritic cell-based autologous tumor vaccines for head and neck squamous cell carcinoma: promise vs reality. Head Neck38(Suppl. 1), E494 (2016).
  • Okada H , KalinskiP , UedaRet al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol.29(3), 330–336 (2011).
  • Xin HW , HariDM , MullinaxJEet al. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division. Stem Cells30(4), 591–598 (2012).
  • Wei X , ChenF , XinKet al. Cancer-testis antigen peptide vaccine for cancer immunotherapy: progress and prospects. Transl. Oncol.12(5), 733–738 (2019).
  • ‘Home - ClinicalTrials.gov’. https://clinicaltrials.gov/
  • Cruz CR , GerdemannU , LeenAMet al. Improving T-cell therapy for relapsed EBV-negative Hodgkin lymphoma by targeting upregulated MAGE-A4. Clin. Cancer Res.17(22), 7058–7066 (2011).
  • Zajac P , Schultz-ThaterE , TornilloLet al. MAGE-A antigens and cancer immunotherapy. Front. Med.0(MAR), 18 (2017).
  • Lattanzi M , HanJ , MoranUet al. Adjuvant NY-ESO-1 vaccine immunotherapy in high-risk resected melanoma: a retrospective cohort analysis. J. Immunother. Cancer6(1), 1–10 (2018).
  • Zhang Y , ZhangY , ZhangL. Expression of cancer–testis antigens in esophageal cancer and their progress in immunotherapy. J. Cancer Res. Clin. Oncol.145(2), 281–291 (2019).
  • Cintolo JA , DattaJ , MathewSJ , CzernieckiBJ. Dendritic cell-based vaccines: barriers and opportunities. Future Oncol.8(10), 1273–1299 (2012).
  • Gök M , ÖzceritAT. Prediction of MHC class I binding peptides with a new feature encoding technique. Cell. Immunol.275(1–2), 1–4 (2012).
  • Kortleve D , CoelhoRML , HammerD , DebetsR. Cancer germline antigens and tumor-agnostic CD8+ T cell evasion. Trends Immunol. (2022). ( In Press).
  • June CH , O’ConnorRS , KawalekarOU , GhassemiS , MiloneMC. CAR T cell immunotherapy for human cancer. Science359(6382), 1361–1365 (2018).
  • Sadelain M , BrentjensR , RivièreI. The basic principles of chimeric antigen receptor design. Cancer Discov.3(4), 388–398 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.