165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Methylated Ccfdna from Plasma Biomarkers of Alzheimer’s Disease Using Targeted Bisulfite Sequencing

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 451-468 | Received 25 Nov 2021, Accepted 04 Mar 2022, Published online: 13 Apr 2022

References

  • Decker B , ShollLM. Cell-Free DNA Testing. In: Genomic MedicineSpringer, Cham, Switzerland, 41–54 (2020).
  • Long JM , HoltzmanDM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell179(2), 312–339 (2019).
  • Van De Haar HJ , BurgmansS , JansenJFAet al. Blood–brain barrier leakage in patients with early Alzheimer disease. Radiology281(2), 527–535 (2016).
  • Chakraborty A , DeWit NM , VanDer Flier WM , DeVries HE. The blood–brain barrier in Alzheimer’s disease. Vascul. Pharmacol.89, 12–18 (2017).
  • Noe CR , Noe-LetschnigM , HandschuhP , NoeCA , LanzenbergerR. Dysfunction of the blood–brain barrier – a key step in neurodegeneration and dementia. Front. Aging Neurosci.12, 185 (2020).
  • Zvěřová M . Clinical aspects of Alzheimer’s disease. Clin. Biochem.72, 3–6 (2019).
  • Octave JN . Alzheimer disease: cellular and molecular aspects. Bull. Mem. Acad. R. Med. Belg.160(10–12), 445–449 (2005).
  • Pai MC , KuoYM , WangIF , ChiangPM , TsaiKJ. The role of methylated circulating nucleic acids as a potential biomarker in Alzheimer’s disease. Mol. Neurobiol.56(4), 2440–2449 (2019).
  • Stoccoro A , SicilianoG , MiglioreL , CoppedeF. Decreased methylation of the mitochondrial D-loop region in late-onset Alzheimer’s disease. J. Alzheimers Dis.59(2), 559–564 (2017).
  • Swarbrick S , WraggN , GhoshS , StolzingA. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol. Neurobiol.56(9), 6156–6167 (2019).
  • Paraskevaidi M , AllsopD , KarimS , MartinFL , CreanS. Diagnostic biomarkers for Alzheimer’s disease using non-invasive specimens. J. Clin. Med.9(6), 1673 (2020).
  • Chen L . Cancer detection from plasma cell-free DNA. E3S Web Conf.218, 1–6 (2020).
  • Duvvuri B , LoodC. Cell-free DNA as a biomarker in autoimmune rheumatic diseases. Front. Immunol.10, 502 (2019).
  • Robichaud PP , ArseneaultM , O’ConnellC , OuelletteRJ, Others. Circulating cell-free DNA as potential diagnostic tools for amyotrophic lateral sclerosis. Neurosci. Lett.750, 135813 (2021).
  • Snyder MW , KircherM , HillAJ , DazaRM , ShendureJ. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell164(1–2), 57–68 (2016).
  • Lehmann-Werman R , NeimanD , ZemmourHet al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc. Natl Acad. Sci. USA113(13), e1826–e1834 (2016).
  • Guo S , DiepD , PlongthongkumN , FungHL , ZhangK , ZhangK. Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat. Genet.49(4), 635–642 (2017).
  • Moss J , MagenheimJ , NeimanDet al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun.9(1), 1–12 (2018).
  • Cheng AP , ChengMP , GuWet al. Cell-free DNA tissues of origin by methylation profiling reveals significant cell, tissue, and organ-specific injury related to COVID-19 severity. Medicine (NY)2(4), 411–422 (2021).
  • Constâncio V , NunesSP , HenriqueR , JerónimoC. DNA methylation-based testing in liquid biopsies as detection and prognostic biomarkers for the four major cancer types. Cells9(3), 624 (2020).
  • Locke WJ , GuanzonD , MaCet al. DNA methylation cancer biomarkers: translation to the clinic. Front. Genet.10, 1150 (2019).
  • Luo H , WeiW , YeZ , ZhengJ , XuRH. Liquid biopsy of methylation biomarkers in cell-free DNA. Trends Mol. Med.27, 482–500 (2021).
  • Poon CH , TseLSR , LimLW. DNA methylation in the pathology of Alzheimer’s disease: from gene to cognition. Ann. NY Acad. Sci.1475(1), 15–33 (2020).
  • Roubroeks JAY , SmithRG , VanDen Hove DLA , LunnonK. Epigenetics and DNA methylomic profiling in Alzheimer’s disease and other neurodegenerative diseases. J. Neurochem.143, 158–170 (2017).
  • Qazi TJ , QuanZ , MirA , QingH. Epigenetics in Alzheimer’s disease: perspective of DNA methylation. Mol. Neurobiol.55(2), 1026–1044 (2018).
  • Coppedè F . Methylation analysis of DNA in Alzheimer’s disease. In: Genetics, Neurology, Behavior, and Diet in Dementia. Elsevier, Amsterdam, The Netherlands, 261–274 (2020).
  • Chen L. , ShenQ. , XuS.et al. 5-hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for late-onset Alzheimer’s disease. J. Alzheimer Dis..85, 573–585 (2022).
  • Fransquet PD , RyanJ. The current status of blood epigenetic biomarkers for dementia. Crit. Rev. Clin. Lab. Sci.56(7), 435–457 (2019).
  • Gerber T , Taschner-MandlS , Saloberger-SindhöringerLet al. Assessment of pre-analytical sample handling conditions for comprehensive liquid biopsy analysis. J. Mol. Diagn.22(8), 1070–1086 (2020).
  • Kustanovich A , SchwartzR , PeretzT , GrinshpunA. Life and death of circulating cell-free DNA. Cancer Biol. Ther.20(8), 1057–1067 (2019).
  • Sun K , JiangP , ChengSHet al. Orientation-aware plasma cell-free DNA fragmentation analysis in open chromatin regions informs tissue of origin. Genome Res.29(3), 418–427 (2019).
  • Huang J , WangL. Cell-free DNA methylation profiling analysis – technologies and bioinformatics. Cancers (Basel)11(11), 1741 (2019).
  • Chan KCA , JiangP , ChanCWMet al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc. Natl Acad. Sci. U. S. A.110(47), 18761–18768 (2013).
  • Legendre C , GoodenGC , JohnsonK , MartinezRA , LiangWS , SalhiaB. Whole-genome bisulfite sequencing of cell-free DNA identifies signature associated with metastatic breast cancer. Clin. Epigenetics7, 100 (2015).
  • Maggi EC , GravinaS , ChengHet al. Development of a method to implement whole-genome bisulfite sequencing of cfDNA from cancer patients and a mouse tumor model. Front. Genet.9, 6 (2018).
  • Erger F , NörlingD , BorchertDet al. cfNOMe – a single assay for comprehensive epigenetic analyses of cell-free DNA. Genome Med.12(1), 1–14 (2020).
  • Holmila R , SkliasA , MullerDCet al. Targeted deep sequencing of plasma circulating cell-free DNA reveals vimentin and fibulin 1 as potential epigenetic biomarkers for hepatocellular carcinoma. PLoS One12(3), e0174265 (2017).
  • Xu RH , WeiW , KrawczykMet al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater.16(11), 1155–1161 (2017).
  • Liu L , ToungJM , JassowiczAFet al. Targeted methylation sequencing of plasma cell-free DNA for cancer detection and classification. Ann. Oncol.29(6), 1445–1453 (2018).
  • Liu MC , OxnardGR , KleinEAet al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol.31(6), 745–759 (2020).
  • Wu A , CremaschiP , WetterskogDet al. Genome-wide plasma DNA methylation features of metastatic prostate cancer. J. Clin. Invest.130(4), 1991–2000 (2020).
  • Wreczycka K , GosdschanA , YusufD , GrüningB , AssenovY , AkalinA. Strategies for analyzing bisulfite sequencing data. J. Biotechnol.261, 105–115 (2017).
  • Decamps C , PrivéF , BacherRet al. Guidelines for cell-type heterogeneity quantification based on a comparative analysis of reference-free DNA methylation deconvolution software. BMC Bioinformatics21(1), 1–15 (2020).
  • Davies MN , VoltaM , PidsleyRet al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol.13(6), R43 (2012).
  • Mauger F , HorguesC , Pierre-JeanM , OussadaN , MesrobL , DeleuzeJF. Comparison of commercially available whole-genome sequencing kits for variant detection in circulating cell-free DNA. Sci. Rep.10(1), 1–11 (2020).
  • Daviaud C , RenaultV , MaugerF , DeleuzeJF , TostJ. Whole-genome bisulfite sequencing using the Ovation® Ultralow Methyl-Seq protocol. Methods Mol. Biol.1708, 83–104 (2018).
  • Martin M . Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J.17(1), 10–12 (2011).
  • Krueger F , AndrewsSR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics27(11), 1571–1572 (2011).
  • Quinlan AR , HallIM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics26(6), 841–842 (2010).
  • Akalin A , KormakssonM , LiSet al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol.13(10), 1–9 (2012).
  • Korthauer K , ChakrabortyS , BenjaminiY , IrizarryRA. Detection and accurate false discovery rate control of differentially methylated regions from whole genome bisulfite sequencing. Biostatistics20(3), 367–383 (2019).
  • Hahne F , IvanekR. Visualizing genomic data using Gviz and Bioconductor. Methods Mol. Biol.1418, 335–351 (2016).
  • Harrow J , FrankishA , GonzalezJMet al. GENCODE: the reference human genome annotation for the ENCODE Project. Genome Res.22(9), 1760–1774 (2012).
  • Cavalcante RG , SartorMA. Annotatr: genomic regions in context. Bioinformatics33(15), 2381–2383 (2017).
  • Uhlén M , FagerbergL , HallströmBMet al. Tissue-based map of the human proteome. Science347(6220), 120419 (2015).
  • Zhang L , SilvaTC , YoungJIet al. Epigenome-wide meta-analysis of DNA methylation differences in prefrontal cortex implicates the immune processes in Alzheimer’s disease. Nat. Commun.11(1), 1–13 (2020).
  • Lardenoije R , RoubroeksJAY , PishvaEet al. Alzheimer’s disease-associated (hydroxy)methylomic changes in the brain and blood. Clin. Epigenetics11(1), 1–15 (2019).
  • Semick SA , BharadwajRA , Collado-TorresLet al. Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer’s disease. Acta Neuropathol.137(4), 557–569 (2019).
  • Watson CT , RoussosP , GargPet al. Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer’s disease. Genome Med.8(1), 5 (2016).
  • Roubroeks JAY , SmithAR , SmithRGet al. An epigenome-wide association study of Alzheimer’s disease blood highlights robust DNA hypermethylation in the HOXB6 gene. Neurobiol. Aging95, 26–45 (2020).
  • Madrid A , HoganKJ , PapaleLAet al. DNA hypomethylation in blood links B3GALT4 and ZADH2 to Alzheimer’s disease. J. Alzheimers Dis.66(3), 927–934 (2018).
  • Hernández HG , Sandoval-HernándezAG , Garrido-GilPet al. Alzheimer’s disease DNA methylome of pyramidal layers in frontal cortex: laser-assisted microdissection study. Epigenomics10(11), 1365–1382 (2018).
  • Roy A , Gonzalez-GomezM , PieraniA , MeyerG , ToleS. Lhx2 regulates the development of the forebrain hem system. Cereb. Cortex24(5), 1361–1372 (2014).
  • Yang H , KimJ , KimY , JangSW , SestanN , ShimS. Cux2 expression regulated by Lhx2 in the upper layer neurons of the developing cortex. Biochem. Biophys. Res. Commun.521(4), 874–879 (2020).
  • Srinivasan K , FriedmanBA , EtxeberriaAet al. Alzheimer’s patient microglia exhibit enhanced aging and unique transcriptional activation. Cell Rep.31(13), 107843 (2020).
  • Bouter Y , KacprowskiT , WeissmannRet al. Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer’s disease by deep sequencing. Front. Aging Neurosci.6, 75 (2014).
  • Strang KH , GoldeTE , GiassonBI. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab. Invest.99(7), 912–928 (2019).
  • Pfeifer GP . Defining driver DNA methylation changes in human cancer. Int. J. Mol. Sci.19(4), 1166 (2018).
  • Anastasiadi D , Esteve-CodinaA , PiferrerF. Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. Epigenetics Chromatin11(1), 1–17 (2018).
  • Ozaki Y , YoshinoY , YamazakiKet al. DNA methylation changes at TREM2 intron 1 and TREM2 mRNA expression in patients with Alzheimer’s disease. J. Psychiatr. Res.92, 74–80 (2017).
  • Gu J , BarreraJ , YunYet al. Cell-type specific changes in DNA methylation of SNCA intron 1 in synucleinopathy brains. Front. Neurosci.15, 493 (2021).
  • Shao Y , ShawM , ToddKet al. DNA methylation of TOMM40-APOE-APOC2 in Alzheimer’s disease. J. Hum. Genet.63(4), 459–471 (2018).
  • Dor Y , CedarH. Principles of DNA methylation and their implications for biology and medicine. Lancet392(10149), 777–786 (2018).
  • Wu J , DaiW , WuL , LiW , XiaX , WangJ. Decoding genetic and epigenetic information embedded in cell free DNA with adapted SALP-seq. Int. J. Cancer145(9), 2395–2406 (2019).
  • Chen X , WuT , LiLet al. Transcriptional start site coverage analysis in plasma cell-free DNA reveals disease severity and tissue specificity of COVID-19 patients. Front. Genet.12, 663098 (2021).
  • Barefoot ME , LoyferN , KilitiAJ , McDeedAP 4th , KaplanT , WellsteinA. Detection of cell types contributing to cancer from circulating, cell-free methylated DNA. Front. Genet.12, 671057 (2021).
  • Chatterton Z , MendelevN , ChenSet al. Brain-derived circulating cell-free DNA defines the brain region and cell specific origins associated with neuronal atrophy. bioRxiv538827, 538827 (2019).
  • Chatterton Z , MendelevN , ChenSet al. Bisulfite amplicon sequencing can detect glia and neuron cell-free DNA in blood plasma. Front. Mol. Neurosci.14, 672614 (2021).
  • Bailleux C , LacroixL , BarrangerE , DelalogeS. Using methylation signatures on cell-free DNA for early cancer detection: a new era in liquid biopsy?Ann. Oncol.31(6), 665–667 (2020).
  • Bruno DCF , DonattiA , MartinMet al. Circulating nucleic acids in the plasma and serum as potential biomarkers in neurological disorders. Braz. J. Med. Biol. Res.53(10), e9881 (2020).
  • Wang DS , BennettDA , MufsonEJ , MattilaP , CochranE , DicksonDW. Contribution of changes in ubiquitin and myelin basic protein to age-related cognitive decline. Neurosci. Res.48(1), 93–100 (2004).
  • Zhan X , JicklingGC , AnderBPet al. Myelin basic protein associates with AβPP, Aβ1-42, and amyloid plaques in cortex of Alzheimer’s disease brain. J. Alzheimers Dis.44(4), 1213–1229 (2015).
  • Papuć E , RejdakK. The role of myelin damage in Alzheimer’s disease pathology. Arch. Med. Sci.16(2), 345 (2020).
  • Sanchez-Mut JV , AsoE , HeynHet al. Promoter hypermethylation of the phosphatase DUSP22 mediates PKA-dependent TAU phosphorylation and CREB activation in Alzheimer’s disease. Hippocampus24(4), 363–368 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.