559
Views
0
CrossRef citations to date
0
Altmetric
Review

DNMT1: catalytic and non-catalytic roles in different biological processes

ORCID Icon
Pages 629-643 | Received 24 Jan 2022, Accepted 29 Mar 2022, Published online: 12 Apr 2022

References

  • Lodish H , BerkA , KaiserCAet al. Molecular Biology of the Cell (8th Edition). W.H. Freeman and Co, NY, USA (2016).
  • Riggs AD . X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet.14(1), 9–25 (1975).
  • Holliday R , PughJE. DNA modification mechanisms and gene activity during development. Science187(4173), 226–232 (1975).
  • Tate PH , BirdAP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev.3(2), 226–231 (1993).
  • Jingo D , ConleyAB , YiSV , LunyakVV , JordanIK. On the presence and role of gene-body DNA methylation. Oncotarget3(4), 462–474 (2012).
  • Skvortsov K , StirzakerC , TaberlayP. The DNA methylation landscape in cancer. Essays Biochem.63(6), 797–811 (2019).
  • Lyko F . The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet.19(2), 81–92 (2018).
  • Mohan KN , ChailletJR. Cell and molecular biology of DNA methyltransferase1. Int. Rev. Cell. Mol. Biol.306, 1–42 (2013).
  • Mohan KN . Stem cell models to investigate the role of DNA methylation machinery in development of neuropsychiatric disorders. Stem Cells Int.2016, 4379425 (2016).
  • Bashtrykov P , JankeviciusG , SmarandacheA , JurkowskaRZ , RagozinS , JeltschA. Specificity of Dnmt1 for methylation of hemimethylated CpG sites resides in its catalytic domain. Chem. Biol.19(5), 572–578 (2012).
  • Liu X , GaoQ , LiPet al. UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat. Commun.4, 1563 (2013).
  • Zhao L , SunMA , LiZet al. The dynamics of DNA methylation fidelity during mouse embryonic stem cell self-renewal and differentiation. Genome Res.24(8), 1296–1302 (2014).
  • Arand J , SpeilerD , KariusTet al. In vivo control of CpG and non-CpG methylation by DNA methyltransferases. PLoS Genet.8, e1002750 (2012).
  • Wang Q , YuD , MingXet al. Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance. Nat. Genet.52(8), 828–829 (2020).
  • Pradhan S , BacollaA , WellsRD , RobertsRJ. Recombinant human DNA (cytosine-5) methyltransferase I. Expression, purification and comparison of de novo and maintenance methylation. J. Biol. Chem.274(46), 33002–33010 (1999).
  • Easwaran HP , SchermellehL , LeonhardtH , CardosoMC. Replication-independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep.5(12), 1181–1186 (2004).
  • Charlton J , DowningvTL , SmithvZDet al. Global delay in nascent strand DNA methylation. Nat. Struct. Mol. Biol.25(4), 327–332 (2018).
  • Xu C , CorcesVG. Nascent DNA methylome mapping reveals inheritance of hemimethylation at CTCF/cohesin sites. Science359(6380), 1166–1170 (2018).
  • Ming X , ZhangZ , ZouZet al. Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration. Cell Res.30(11), 980–996 (2020).
  • Kimura H , NakamuraT , OgawaTet al. Transcription of mouse DNA methyltransferase 1 (Dnmt1) is regulated by both E2F-Rb-HDAC-dependent and -independent pathways. Nucleic Acids Res.31(12), 3101–3113 (2003).
  • Schneider K , FuchsC , DobayAet al. Dissection of cell-cycle-dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modeling. Nucleic Acids Res.41(9), 4860–4876 (2013).
  • Unterberger A , AndrewsSD , WeaverICG , SzyfM. DNA methyltransferase 1 knockdown activates a replication stress checkpoint. Mol. Cell. Biol.26(20), 7575–7586 (2006).
  • Cirio MC , RatnamS , DingF , ReinhartB , NavaraC , ChailletJR. Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC Dev. Biol.8, 9 (2008).
  • Howell CY , BestorTH , DingFet al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell104(6), 829–838 (2001).
  • Cirio MC , MartelJ , MannMet al. DNA methyltransferase 1o functions during preimplantation development to preclude a profound level of epigenetic variation. Dev. Biol.324(1), 139–150 (2008).
  • Gaudet F , RideoutWM3rd , MeissnerA , DausmanJ , LeonhardtH , JaenischR. Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing. Mol. Cell. Biol.24(4), 1640–1648 (2004).
  • Sen GL , ReuterJA , WebsterDE , ZhuL , KhavariPA. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature463(7280), 563–567 (2010).
  • D’Aiuto L , DiMaio R , MohanKNet al. Mouse ES cells overexpressing DNMT1 produce abnormal neurons with upregulated NMDA/NR1 subunit. Differentiation82(1), 9–17 (2011).
  • Damelin M , BestorTH. Biological functions of DNA methyltransferase 1 require its methyltransferase activity. Mol. Cell. Biol.27(11), 3891–3899 (2007).
  • Liao J , KarnikR , GuHet al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet.47(5), 469–478 (2015).
  • Loughery JEP , DunnePD , O’NeillKM , MeehanRR , McDaidJR , WalshCP. DNMT1 deficiency triggers mismatch repair defects in human cells through depletion of repair protein levels in a process involving the DNA damage response. Hum. Mol. Genet.20(16), 3241–3255 (2011).
  • Fan G , BeardC , ChenRZ , CsankovszkiGet al. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J. Neurosci.21(3), 788–797 (2001).
  • Trowbridge JJ , SnowJW , KimJ , OrkinSH. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell5(4), 442–449 (2009).
  • Elliot EN , SheafferKL , SchugJ , StappenbeckTS , KaestnerKH. Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium. Development142(12), 2163–2172 (2015).
  • Liu R , KimKY , JungYW , ParkIH. Dnmt1 regulates the myogenic lineage specification of muscle stem cells. Sci. Rep.6, 35355 (2016).
  • Fu X , WuX , DjekidelMN , ZhangY. Myc and Dnmt1 impede the pluripotent to totipotent state transition in embryonic stem cells. Nat. Cell Biol.21(7), 835–844 (2019).
  • Zovkic IB , Guzman-KarlssonMC , SweattJD. Epigenetic regulation of memory formation and maintenance. Learn. Mem.20(2), 61–74 (2013).
  • Miller CA , SweattJD. Covalent modification of DNA regulates memory formation. Neuron53(6), 857–869 (2007).
  • Miller CA , GavinCF , WhiteJAet al. Cortical DNA methylation maintains remote memory. Nat. Neurosci.13(6), 664–666 (2010).
  • Halder R , HennionM , VidalROet al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat. Neurosci.19(1), 102–110 (2016).
  • Feng J , ZhouY , CampbellSLet al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci.13(4), 423–430 (2010).
  • Sun W , KongQ , ZhangMet al. Virus-mediated Dnmt1 and Dnmt3a deletion disrupts excitatory synaptogenesis and synaptic function in primary cultured hippocampal neurons. Biochem. Biophys. Res. Commun.526(2), 361–367 (2020).
  • Lee CW , HuangWC , HuangHDet al. DNA methyltransferases modulate hepatogenic lineage plasticity of mesenchymal stromal cells. Stem Cell Rep.9(1), 247–263 (2017).
  • Park YJ , LeeS , LimSet al. DNMT1 maintains metabolic fitness of adipocytes through acting as an epigenetic safeguard of mitochondrial dynamics. Proc. Natl Acad. Sci. USA118(11), e2021073118 (2021).
  • Loeb LA , MonnatRJ. DNA polymerases and human disease. Nat. Rev. Genet.9(8), 594–604 (2008).
  • Guo G , WangW , BradleyA. Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature429(6994), 891–895 (2004).
  • Wang KY , ChenCC , TsaiSF , ShenCKJ. Epigenetic enhancement of the post-replicative DNA mismatch repair of mammalian genomes by a hemi-mCpG-Np95-Dnmt1. Sci. Rep.6, 37490 (2016).
  • Mortusewicz O , SchermellehL , WalterJ , CardosoMC , LeonhardtH. Recruitment of DNA methyltransferase I to DNA repair sites. Proc. Natl Acad. Sci. USA102(25), 8905–8909 (2005).
  • Boulton SJ , JacksonSP. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J.17(6), 1819–1828 (1998).
  • Gonzalo S , JacoI , FragaMFet al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat. Cell Biol.8(4), 416–424 (2006).
  • Young JI , SedivyJM , SmithJR. Telomerase expression in normal human fibroblasts stabilizes DNA 5-methylcytosine transferase I. J. Biol. Chem.278(22), 19904–19908 (2003).
  • Zhang C , MiJ , DengY , LongD , LiuZ. DNMT1 enhances radiosensitivity of HPV-positive head and neck squamous cell carcinoma via downregulating SMG1. Oncotargets Ther.13, 4201–4211 (2020).
  • Ray D , WuA , WillkinsonEJet al. Aging in heterozygous Dnmt1-deficient mice: effects on survival, the DNA methylation genes, and the development of amyloidosis. J. Gerontol. A Biol. Sci. Med. Sci.61(2), 115–124 (2006).
  • Yung R , RayD , EisenbraunJKet al. Unexpected effects of a heterozygous Dnmt1 null mutation on age-dependent hypomethylation and autoimmunity. J. Gerontol. A Biol. Sci. Med. Sci.56(6), B268–B276 (2001).
  • Woodcock DM , AdamsJK , CooperJA. Characteristics of enzymatic DNA methylation in cultured cells of human and hamster origin, and the effect of DNA replication inhibition. Biochim. Biophys. Acta696(1), 15–22 (1982).
  • Boyes J , BirdAP. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence of involvement of a methyl-CpG binding protein. EMBO J.11(1), 327–333 (1992).
  • Ioshikhes IP , ZhangMQ. Large-scale human promoter mapping using CpG islands. Nat. Genet.26(1), 61–63 (2000).
  • Rhee I , JairKW , YenRWet al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature404(6781), 1003–1007 (2000).
  • Robertson KD , Ait-Si-AliS , YokochiT , WadePA , JonesPA , WolffeAP. DNMT1 forms complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat. Genet.25(3), 338–342 (2000).
  • Clements EG , MohammadHP , LeademBRet al. DNMT1 modulates gene expression without its catalytic activity partially through its interactions with histone-modifying enzymes. Nucleic Acids Res.40(10), 4334–4346 (2012).
  • Espada J , PeinadoH , Lopez-SerraLet al. Regulation of SNAIL1 and E-cadherin function by DNMT1 in a DNA methylation-independent context. Nucleic Acids Res.39(21), 9194–9205 (2011).
  • Tweedie S , CharltonJ , ClarkV , BirdA. Methylation of genomes and genes at the invertebrate–vertebrate boundary. Mol. Cell. Biol.17(3), 469–475 (1997).
  • Schulz NKE , WagnerCI , EbelingJet al. Dnmt1 has an essential function despite the absence of CpG methylation in the red flour beetle Tribolium castaneum. Sci. Rep.8(1), 16462 (2018).
  • Li E , BestorTH , JaenischR. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69(6), 915–926 (1992).
  • Biniszkiewicz D , GribnauJ , RamsahoyeBet al. Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol. Cell. Biol.22(7), 2124–2135 (2002).
  • Gaudet F , HodgsonJG , EdenAet al. Induction of tumors in mice by genomic hypomethylation. Science300(5618), 489–492 (2003).
  • Klein CJ , BotuyanMV , WuYet al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat. Genet.43(6), 595–600 (2011).
  • Fellinger K , RothbauerU , FelleM , LängstG , LeonhardtH. Dimerization of DNMT1 is mediated by its regulatory domain. J. Cell. Biochem.106(4), 521–528 (2009).
  • Wang W , ZhaoX , ShaoYet al. Mutation-induced DNMT1 cleavage drives neurodegenerative disease. Sci. Adv.7, eabae8511 (2021).
  • Sun Z , WuY , OrdogTet al. Aberrant signature methylome by DNMT1 hot spot mutation in hereditary sensory and autonomic neuropathy 1E. Epigenetics9(8), 1184–1193 (2014).
  • Maresca A , DottoVD , CapristoMet al. DNMT1 mutations leading to neurodegeneration paradoxically reflect on mitochondrial metabolism. Hum. Mol. Genet.29(11), 1864–1881 (2020).
  • Liu L , GroenTV , KadishIet al. Insufficient DNA methylation affects healthy aging and promotes age-related health problems. Clin. Epigenet.2(2), 349–360 (2011).
  • Veldic M , GuidottiA , MalokuE , DavisJM , CostaE. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc. Natl Acad. Sci. USA102(6), 2152–2157 (2005).
  • Zhu Q , WangL , ZhangYet al. Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. J. Mol. Neurosci.46(2), 420–426 (2012).
  • Borowczyk E , MohanKN , D’AiutoL , CirioMC , ChailletJR. Identification of a region of the DNMT1 methyltransferase that regulates the maintenance of genomic imprints. Proc. Natl Acad. Sci. USA106(49), 20806–20811 (2009).
  • Saxena S , MarojuPA , ChoudhuryS , AnneA , MohanKN. Analysis of transcript levels of a few schizophrenia candidate genes in neurons from a transgenic mouse embryonic stem cell model overexpressing DNMT1. Gene757, 144934 (2020).
  • Saxena S , ChoudhuryS , MarojuPA , AnneA , KumarL , MohanKN. Dysregulation of schizophrenia-associated genes and genome-wide hypomethylation in neurons overexpressing DNMT1. Epigenomics13(19), 1539–1555 (2021).
  • Cui J , ZhengL , ZhangY , XueM. Bioinformatics analysis of DNMT1 expression and its role in head and neck squamous cell carcinoma prognosis. Sci. Rep.11(1), 2267 (2021).
  • Pathania R , RamachandranS , ElangovanSet al. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat. Commun.6, 6910 (2015).
  • Zagorac S , AlcalaS , BayonGFet al. DNMT1 inhibition reprograms pancreatic cancer stem cells via upregulation of the miR-17-92 cluster. Cancer Res.76(15), 4546–4558 (2016).
  • Trowbridge JJ , SinhaAU , ZhuN , LiM , ArmstrongSA , OrkinSH. Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev.26(4), 344–349 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.