324
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetics and its Therapeutic Potential in Colorectal Cancer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 683-697 | Received 24 Feb 2022, Accepted 05 Apr 2022, Published online: 27 Apr 2022

References

  • Sung H , FerlayJ , SiegelRLet al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.71(3), 209–249 (2021).
  • Dyba T , RandiG , BrayFet al. The European cancer burden in 2020: incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer157, 308–347 (2021).
  • Siegel RL , MillerKD , FuchsHE , JemalA. Cancer statistics, 2022. CA Cancer J. Clin.72(1), 7–33 (2022).
  • Adam R , HallerDG , PostonGet al. Toward optimized front-line therapeutic strategies in patients with metastatic colorectal cancer – an expert review from the International Congress on Anti-Cancer Treatment (ICACT) 2009. Ann. Oncol.21(8), 1579–1584 (2010).
  • Berger SL , KouzaridesT , ShiekhattarR , ShilatifardA. An operational definition of epigenetics. Genes Dev.23(7), 781–783 (2009).
  • Turner BM . Epigenetic responses to environmental change and their evolutionary implications. Philos. Trans. R Soc. Lond. B. Biol. Sci.364(1534), 3403–3418 (2009).
  • Choi M , GenereuxDP , GoodsonJet al. Epigenetic memory via concordant DNA methylation is inversely correlated to developmental potential of mammalian cells. PLoS Genet.13(11), e1007060, (2017).
  • Marmol I , Sanchez-de-DiegoC , PradillaDieste A , CerradaE , RodriguezYoldi MJ. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci.18(1), 197–236 (2017).
  • Stoffel EM , MurphyCC. Epidemiology and mechanisms of the increasing incidence of colon and rectal cancers in young adults. Gastroenterology158(2), 341–353 (2020).
  • La Vecchia S , SebastianC. Metabolic pathways regulating colorectal cancer initiation and progression. Semin. Cell Dev. Biol.98, 63–70 (2020).
  • Dekker E , TanisPJ , VleugelsJLA , KasiPM , WallaceMB. Colorectal cancer. Lancet394(10207), 1467–1480 (2019).
  • Yu H , HemminkiK. Genetic epidemiology of colorectal cancer and associated cancers. Mutagenesis35(3), 207–219 (2020).
  • Brenner H , KloorM , PoxCP. Colorectal cancer. Lancet383(9927), 1490–1502 (2014).
  • Koliarakis I , MessaritakisI , NikolouzakisTKet al. Oral bacteria and intestinal dysbiosis in colorectal cancer. Int. J. Mol. Sci.20(17), 4146–4175 (2019).
  • Lin C , CaiX , ZhangJet al. Role of gut microbiota in the development and treatment of colorectal cancer. Digestion100(1), 72–78 (2019).
  • Nguyen LH , GoelA , ChungDC. Pathways of colorectal carcinogenesis. Gastroenterology158(2), 291–302 (2020).
  • Jasperson KW , TuohyTM , NeklasonDW , BurtRW. Hereditary and familial colon cancer. Gastroenterology138(6), 2044–2058 (2010).
  • Wells K , WisePE. Hereditary colorectal cancer syndromes. Surg. Clin. North Am.97(3), 605–625 (2017).
  • Jung G , Hernández-IllánE , MoreiraL , BalaguerF , GoelA. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol.17(2), 111–130 (2020).
  • Kasprzak A . Angiogenesis-related functions of Wnt signaling in colorectal carcinogenesis. Cancers (Basel)12(12), 3601–3640(2020).
  • Pitts TM , NewtonTP , Bradshaw-PierceELet al. Dual pharmacological targeting of the MAP kinase and Pi3k/Mtor pathway in preclinical models of colorectal cancer. PLoS One9(11), e113037 (2014).
  • Slattery ML , HerrickJS , PellattDFet al. microRNA profiles in colorectal carcinomas, adenomas and normal colonic mucosa: variations in miRNA expression and disease progression. Carcinogenesis37(3), 245–261 (2016).
  • Hong SN . Genetic and epigenetic alterations of colorectal cancer. Intest. Res.16(3), 327–337 (2018).
  • Rao CV , YamadaHY. Genomic instability and colon carcinogenesis: from the perspective of genes. Front. Oncol.3, 130 (2013).
  • Xie W , SchultzMD , ListerRet al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell153(5), 1134–1148 (2013).
  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet.13(7), 484–492 (2012).
  • Fraga MF , AgreloR , EstellerM. Cross-talk between aging and cancer: the epigenetic language. Ann. NY Acad. Sci.1100, 60–74 (2007).
  • Kribelbauer JF , LuXJ , RohsR , MannRS , BussemakerHJ. Toward a mechanistic understanding of DNA methylation readout by transcription factors. J. Mol. Biol.432(6), 1801–1815 (2019).
  • Bourc’his D , XuGL , LinCS , BollmanB , BestorTH. DNMT3L and the establishment of maternal genomic imprints. Science294(5551), 2536–2539 (2001).
  • Carmona FJ , AzuaraD , Berenguer-LlergoAet al. DNA methylation biomarkers for noninvasive diagnosis of colorectal cancer. Cancer Prev. Res. (Phila.)6(7), 656–665 (2013).
  • Galanopoulos M , TsoukalasN , PapanikolaouISet al. Abnormal DNA methylation as a cell-free circulating DNA biomarker for colorectal cancer detection: a review of literature. World J. Gastrointest. Oncol.9(4), 142–152 (2017).
  • Lange CP , LairdPW. Clinical applications of DNA methylation biomarkers in colorectal cancer. Epigenomics5(2), 105–108 (2013).
  • Yang XJ , SetoE. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene26(37), 5310–5318 (2007).
  • Feinberg AP , TyckoB. The history of cancer epigenetics. Nat. Rev. Cancer4(2), 143–153 (2004).
  • Byun DS , AhmedN , NasserSet al. Intestinal epithelial-specific PTEN inactivation results in tumor formation. Am. J. Physiol. Gastrointest. Liver Physiol.301(5), G856–G864 (2011).
  • Donninger H , VosMD , ClarkGJ. The RASSF1A tumor suppressor. J. Cell Sci.120(Pt 18), 3163–3172 (2007).
  • Fernandes MS , CarneiroF , OliveiraC , SerucaR. Colorectal cancer and Rassf family – a special emphasis on Rassf1a. Int. J. Cancer132(2), 251–258 (2013).
  • Harada K , HiraokaS , KatoJet al. Genetic and epigenetic alterations of ras signalling pathway in colorectal neoplasia: analysis based on tumour clinicopathological features. Br. J. Cancer97(10), 1425–1431 (2007).
  • Marsh V , WintonDJ , WilliamsGTet al. Epithelial PTEN is dispensable for intestinal homeostasis but suppresses adenoma development and progression after Apc mutation. Nat. Genet.40(12), 1436–1444 (2008).
  • Rad R , CadiñanosJ , RadLet al. A genetic progression model of BRAFV600E-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer Cell24(1), 15–29 (2013).
  • Rojas A , MeheremS , KimYHet al. The aberrant methylation of TSP1 suppresses TGF-Beta1 activation in colorectal cancer. Int. J. Cancer123(1), 14–21 (2008).
  • Segditsas S , SieberOM , RowanAet al. Promoter hypermethylation leads to decreased APC mRNA expression in familial polyposis and sporadic colorectal tumours, but does not substitute for truncating mutations. Exp. Mol. Pathol.85(3), 201–206 (2008).
  • Shen L , KondoY , HamiltonSR , RashidA , IssaJPJ. P14 methylation in human colon cancer is associated with microsatellite instability and wild-type p53. Gastroenterology124(3), 626–633 (2003).
  • Sierra J , YoshidaT , JoazeiroCA , JonesKA. The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev.20(5), 586–600 (2006).
  • Mohn F , WeberM , RebhanMet al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell30(6), 755–766 (2008).
  • Ohm JE , McGarveyKM , YuXet al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet.39(2), 237–242 (2007).
  • Fanelli GN , DalPozzo CA , DepetrisIet al. The heterogeneous clinical and pathological landscapes of metastatic BRAF-mutated colorectal cancer. Cancer Cell Int.20, 30 (2020).
  • Fang M , OuJ , HutchinsonL , GreenMR. The BRAF oncoprotein functions through the transcriptional repressor MAFg to mediate the CpG island methylator phenotype. Mol. Cell55(6), 904–915 (2014).
  • Lippman Z , GendrelAV , BlackMet al. Role of transposable elements in heterochromatin and epigenetic control. Nature430(6998), 471–476 (2004).
  • Sheaffer KL , ElliottEN , KaestnerKH. DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev. Res. (Phila.)9(7), 534–546 (2016).
  • Yamada Y , Jackson-GrusbyL , LinhartHet al. Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc. Natl Acad. Sci. USA102(38), 13580–13585 (2005).
  • Fussbroich B , WagenerN , Macher-GoeppingerSet al. EZH2 depletion blocks the proliferation of colon cancer cells. PLoS One6(7), e21651 (2011).
  • Veneti Z , GkouskouKK , EliopoulosAG. Polycomb repressor complex 2 in genomic instability and cancer. Int. J. Mol. Sci.18(8), 1657–1672(2017).
  • Ferraro A , MourtzoukouD , KosmidouVet al. EZH2 is regulated by ERK/AKT and targets integrin Alpha2 gene to control epithelial-mesenchymal transition and anoikis in colon cancer cells. Int. J. Biochem. Cell Biol.45(2), 243–254 (2013).
  • Morera L , LübbertM , JungM. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin. Epigenetics8, 57 (2016).
  • Hansen KH , BrackenAP , PasiniDet al. A model for transmission of the H3K27ME3 epigenetic mark. Nat. Cell Biol.10(11), 1291–1300 (2008).
  • Guo C , ChenLH , HuangYet al. KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation. Oncotarget4(11), 2144–2153 (2013).
  • Kang MY , LeeBB , KimYHet al. Association of the SUV39H1 histone methyltransferase with the DNA methyltransferase 1 at mRNA expression level in primary colorectal cancer. Int. J. Cancer121(10), 2192–2197 (2007).
  • Natarajan TG , KallakuryBV , SheehanCEet al. Epigenetic regulator Mll2 shows altered expression in cancer cell lines and tumors from human breast and colon. Cancer Cell Int.10, 13, (2010).
  • Mittal P , RobertsCWM. The SWI/SNF complex in cancer – biology, biomarkers and therapy. Nat. Rev. Clin. Oncol.17(7), 435–448 (2020).
  • Bardhan K , LiuK. Epigenetics and colorectal cancer pathogenesis. Cancers (Basel)5(2), 676–713 (2013).
  • Weichert W , RöskeA , NiesporekSet al. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin. Cancer Res.14(6), 1669–1677 (2008).
  • Ishihama K , YamakawaM , SembaSet al. Expression of HDAC1 and CBP/P300 in human colorectal carcinomas. J. Clin. Pathol.60(11), 1205–1210 (2007).
  • Bosch-Presegué L , VaqueroA. The dual role of Sirtuins in cancer. Genes Cancer2(6), 648–662 (2011).
  • Nosho K , ShimaK , IraharaNet al. SIRT1 histone deacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod. Pathol.22(7), 922–932 (2009).
  • Ferracin M , PedrialiM , VeroneseAet al. microRNA profiling for the identification of cancers with unknown primary tissue-of-origin. J. Pathol.225(1), 43–53 (2011).
  • Yamamoto H , AdachiY , TaniguchiHet al. Interrelationship between microsatellite instability and microRNA in gastrointestinal cancer. World J. Gastroenterol.18(22), 2745–2755 (2012).
  • Nagy ZB , WichmannB , KalmárAet al. Colorectal adenoma and carcinoma specific miRNA profiles in biopsy and their expression in plasma specimens. Clin. Epigenetics9, 22 (2017).
  • Schetter AJ , LeungSY , SohnJJet al. microRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA299(4), 425–436 (2008).
  • Chang KH , MillerN , KheirelseidEAet al. microRNA signature analysis in colorectal cancer: identification of expression profiles in stage Ii tumors associated with aggressive disease. Int. J. Colorectal Dis.26(11), 1415–1422 (2011).
  • Faltejskova P , SvobodaM , SrutovaKet al. Identification and functional screening of microRNAs highly deregulated in colorectal cancer. J. Cell. Mol. Med.16(11), 2655–2666 (2012).
  • Gattolliat CH , UguenA , PessonMet al. microRNA and targeted mRNA expression profiling analysis in human colorectal adenomas and adenocarcinomas. Eur. J. Cancer51(3), 409–420 (2015).
  • Zhang GJ , ZhouH , XiaoHX , LiY , ZhouT. miR-378 is an independent prognostic factor and inhibits cell growth and invasion in colorectal cancer. BMC Cancer14, 109 (2014).
  • Zheng K , LiuW , LiuY , JiangC , QianQ. microRNA-133a suppresses colorectal cancer cell invasion by targeting Fascin1. Oncol Lett.9(2), 869–874 (2015).
  • Wang FF , ZhangXJ , YanYRet al. FBX8 is a metastasis suppressor downstream of miR-223 and targeting mTOR for degradation in colorectal carcinoma. Cancer Lett.388, 85–95 (2017).
  • Fanale D , CastigliaM , BazanV , RussoA. Involvement of non-coding RNAs in chemo- and radioresistance of colorectal cancer. Adv. Exp. Med. Biol.937, 207–228 (2016).
  • Raza U , ZhangJD , SahinO. microRNAs: master regulators of drug resistance, stemness, and metastasis. J. Mol. Med. (Berl.)92(4), 321–336 (2014).
  • Wu QB , ShengX , ZhangN , YangMW , WangF. Role of microRNAs in the resistance of colorectal cancer to chemoradiotherapy. Mol. Clin. Oncol.8(4), 523–527 (2018).
  • Lampropoulou DI , PliakouE , AravantinosG , FilippouD , GazouliM. The role of exosomal non-coding RNAs in colorectal cancer drug resistance. Int. J. Mol. Sci.23(3), 1473–1498(2022).
  • Donzelli S , MoriF , BiagioniFet al. microRNAs: short non-coding players in cancer chemoresistance. Mol, Cell Ther.2, 16, (2014).
  • Rezapour S , HosseinzadehE , MarofiF , HassanzadehA. Epigenetic-based therapy for colorectal cancer: prospect and involved mechanisms. J. Cell. Physiol.234(11), 19366–19383 (2019).
  • Thomas ML , MarcatoP. Epigenetic modifications as biomarkers of tumor development, therapy response, and recurrence across the cancer care continuum. Cancers (Basel)10(4), 101–121(2018).
  • Chen B , ZhuY , ChenJ , FengY , XuY. Activation of TC10-like transcription by lysine demethylase KDM4B in colorectal cancer cells. Front. Cell Dev. Biol.9, 617549, (2021).
  • Gerecke C , SchumacherF , EdlichAet al. Vitamin C promotes decitabine or azacytidine induced DNA hydroxymethylation and subsequent reactivation of the epigenetically silenced tumour suppressor CDKN1A in colon cancer cells. Oncotarget9(67), 32822–32840 (2018).
  • Raskov H , SøbyJH , TroelsenJ , BojesenRD , GögenurI. Driver gene mutations and epigenetics in colorectal cancer. Ann. Surg.271(1), 75–85 (2020).
  • Cervena K , SiskovaA , BuchlerT , VodickaP , VymetalkovaV. Methylation-based therapies for colorectal cancer. Cells9(6), 1540–1569(2020).
  • Niinuma T , KitajimaH , KaiMet al. UHRF1 depletion and HDAC inhibition reactivate epigenetically silenced genes in colorectal cancer cells. Clin. Epigenetics11(1), 70 (2019).
  • Pouya FD , GazouliM , RasmiY , LampropoulouDI , NematiM. microRNAs and drug resistance in colorectal cancer with special focus on 5-fluorouracil. Mol. Biol. Rep. (2022).
  • Vodenkova S , BuchlerT , CervenaKet al. 5-Fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol. Ther.206, 107447 (2020).
  • Ahadi A . The significance of microRNA deregulation in colorectal cancer development and the clinical uses as a diagnostic and prognostic biomarker and therapeutic agent. Non-coding RNA Research5(3), 125–134 (2020).
  • Kadayifci FZ , ZhengS , PanYX. Molecular mechanisms underlying the link between diet and DNA methylation. Int. J. Mol. Sci.19(12), 4055–4074 (2018).
  • Aghabozorgi AS , SharifS , Jafarzadeh-EsfehaniR , VakiliS , AbbaszadeganMR. Role of miRNA gene variants in the susceptibility and pharmacogenetics of colorectal cancer. Pharmacogenomics22(5), 303–318 (2021).
  • Kashani E , HadizadehM , ChaleshiVet al. The differential DNA hypermethylation patterns of microRNA-137 and microRNA-342 locus in early colorectal lesions and tumours. Biomolecules9(10), 519–532 (2019).
  • Marcuello M , VymetalkovaV , NevesRPLet al. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol. Aspects Med.69, 107–122 (2019).
  • Roberti A , ValdesAF , TorrecillasR , FragaMF , FernandezAF. Epigenetics in cancer therapy and nanomedicine. Clin. Epigenetics11(1), 81 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.