117
Views
0
CrossRef citations to date
0
Altmetric
Review

New developments in non-exosomal and exosomal ncRNAs in coronary artery disease

, , , , , , , , , & ORCID Icon show all
Pages 1355-1372 | Received 01 Jun 2022, Accepted 21 Oct 2022, Published online: 14 Dec 2022

References

  • Thomas H , DiamondJ , ViecoAet al. Global Atlas of Cardiovascular Disease 2000–2016: the path to prevention and control. Glob. Heart13(3), 143–163 (2018).
  • GBD 2017 Disease and Injury Incidence and Prevalence Collaborators . Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England)392(10159), 1789–1858 (2018).
  • Mattick JS , MakuninIV. Non-coding RNA. Hum. Mol. Genet.15 Spec No 1, R17–R29 (2006).
  • Fasolo F , DiGregoli K , MaegdefesselL , JohnsonJL. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc. Res.115(12), 1732–1756 (2019).
  • Jing R , ZhongQ-Q , LongT-Y , PanW , QianZ-X. Downregulated miRNA-26a-5p induces the apoptosis of endothelial cells in coronary heart disease by inhibiting PI3K/AKT pathway. Eur. Rev. Med. Pharmacol. Sci.23(11), 4940–4947 (2019).
  • Mattick JS . Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep.2(11), 986–991 (2001).
  • Mattick JS , GagenMJ. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol. Biol. Evol.18(9), 1611–1630 (2001).
  • Poller W , DimmelerS , HeymansSet al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur. Heart J.39(29), 2704–2716 (2018).
  • Pong SK , GullerovaM. Noncanonical functions of microRNA pathway enzymes – Drosha, DGCR8, Dicer and Ago proteins. FEBS Lett.592(17), 2973–2986 (2018).
  • Kabekkodu SP , ShuklaV , VargheseVK , D’SouzaJ , ChakrabartyS , SatyamoorthyK. Clustered miRNAs and their role in biological functions and diseases. Biol. Rev. Camb. Philos. Soc.93(4), 1955–1986 (2018).
  • Roth GA , MensahGA , JohnsonCOet al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J. Am. Coll. Cardiol.76(25), 2982–3021 (2020).
  • Wu L , FanJ , BelascoJG. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl Acad. Sci. USA103(11), 4034–4039 (2006).
  • Scadden AD . The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat. Struct. Mol. Biol.12(6), 489–496 (2005).
  • Schier AC , TaatjesDJ. Structure and mechanism of the RNA polymerase II transcription machinery. Genes Dev.34(7–8), 465–488 (2020).
  • Ali T , GroteP. Beyond the RNA-dependent function of lncRNA genes. Elife9, e60583 (2020).
  • Kitagawa M , KitagawaK , KotakeY , NiidaH , OhhataT. Cell cycle regulation by long non-coding RNAs. Cell. Mol. Life Sci.70(24), 4785–4794 (2013).
  • Delás MJ , SabinLR , DolzhenkoEet al. lncRNA requirements for mouse acute myeloid leukemia and normal differentiation. Elife6, e25607 (2017).
  • Sirey TM , RobertsK , HaertyWet al. The long non-coding RNA Cerox1 is a post transcriptional regulator of mitochondrial complex I catalytic activity. Elife8, e50980 (2019).
  • Yuan J , YangF , WangFet al. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell25(5), 666–681 (2014).
  • Postepska-Igielska A , GiwojnaA , Gasri-PlotnitskyLet al. lncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol. Cell60(4), 626–636 (2015).
  • Arora R , LeeY , WischnewskiH , BrunCM , SchwarzT , AzzalinCM. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat. Commun.5, 5220 (2014).
  • Clemson CM , McNeilJA , WillardHF , LawrenceJB. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol.132(3), 259–275 (1996).
  • Schmidt K , WeidmannCA , HilimireTAet al. Targeting the oncogenic long non-coding RNA SLNCR1 by blocking its sequence-specific binding to the androgen receptor. Cell Rep.30(2), 541–554.e5 (2020).
  • Ballantyne MD , McDonaldRA , BakerAH. lncRNA/microRNA interactions in the vasculature. Clin. Pharmacol. Ther.99(5), 494–501 (2016).
  • Ebert MS , NeilsonJR , SharpPA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods4(9), 721–726 (2007).
  • Ponting CP , OliverPL , ReikW. Evolution and functions of long noncoding RNAs. Cell136(4), 629–641 (2009).
  • Faghihi MA , ZhangM , HuangJet al. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol.11(5), R56 (2010).
  • Chen N , ZhaoG , YanXet al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol.19(1), 218 (2018).
  • Li Z , HuangC , BaoCet al. Exon–intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol.22(3), 256–264 (2015).
  • Zhang Y , ZhangX-O , ChenTet al. Circular intronic long noncoding RNAs. Mol. Cell51(6), 792–806 (2013).
  • Sun Z , ChenC , SuYet al. Regulatory mechanisms and clinical perspectives of circRNA in digestive system neoplasms. J. Cancer10(13), 2885–2891 (2019).
  • Legnini I , DiTimoteo G , RossiFet al. circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell66(1), 22–37.e9 (2017).
  • Kalayinia S , ArjmandF , MalekiM , MalakootianM , SinghCP. MicroRNAs: roles in cardiovascular development and disease. Cardiovasc. Pathol.50, 107296 (2021).
  • Cao Q , GuoZ , DuS , LingH , SongC. Circular RNAs in the pathogenesis of atherosclerosis. Life Sci.255, 117837 (2020).
  • Zhou Y , ZhouB , PacheLet al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun.10(1), 1523 (2019).
  • Shannon P , MarkielA , OzierOet al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13(11), 2498–2504 (2003).
  • Cardona-Monzonís A , García-GiménezJL , Mena-MolláSet al. Non-coding RNAs and coronary artery disease. Adv. Exp. Med. Biol.1229, 273–285 (2020).
  • Shi L , ZhangY , ZhangJet al. miR-339 is a potential biomarker of coronary heart disease to aggravate oxidative stress through Nrf2/FOXO3 targeting Sirt2. Ann. Palliat. Med.10(3), 2596–2609 (2021).
  • Wang H , HeF , LiangBet al. lincRNA-p21 alleviates atherosclerosis progression through regulating the miR-221/SIRT1/Pcsk9 axis. J. Cell. Mol. Med.25(19), 9141–9153 (2021).
  • Zhu Q , ZhaoC , WangY , LiX , XueY , MaC. lncRNA NEAT1 promote inflammatory responses in coronary slow flow through regulating miR-148b-3p/ICAM-1 axis. J. Inflamm. Res.14, 2445–2463 (2021).
  • Zhou J , LiL , HuHet al. circ-HIPK2 accelerates cell apoptosis and autophagy in myocardial oxidative injury by sponging miR-485-5p and targeting ATG101. J. Cardiovasc. Pharmacol.76(4), 427–436 (2020).
  • Peng W , LiT , PiS , HuangL , LiuY. Suppression of circular RNA circDHCR24 alleviates aortic smooth muscle cell proliferation and migration by targeting miR-149-5p/MMP9 axis. Biochem. Biophys. Res. Commun.529(3), 753–759 (2020).
  • Salmena L , PolisenoL , TayY , KatsL , PandolfiPP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?Cell146(3), 353–358 (2011).
  • Xiong F , MaoR , ZhangLet al. CircNPHP4 in monocyte-derived small extracellular vesicles controls heterogeneous adhesion in coronary heart atherosclerotic disease. Cell Death Dis.12(10), 948 (2021).
  • Li J , ChenJ , ZhangFet al. LncRNA CDKN2B-AS1 hinders the proliferation and facilitates apoptosis of ox-LDL-induced vascular smooth muscle cells via the ceRNA network of CDKN2B-AS1/miR-126-5p/PTPN7. Int. J. Cardiol.340, 79–87 (2021).
  • Wang H , JinZ , PeiTet al. Long noncoding RNAs C2dat1 enhances vascular smooth muscle cell proliferation and migration by targeting MiR-34a-5p. J. Cell. Biochem.120(3), 3001–3008 (2019).
  • Wang YQ , XuZM , WangXLet al. LncRNA FOXC2-AS1 regulated proliferation and apoptosis of vascular smooth muscle cell through targeting miR-1253/FOXF1 axis in atherosclerosis. Eur. Rev. Med. Pharmacol. Sci.24(6), 3302–3314 (2020).
  • Zhou XH , ChaiHX , BaiM , ZhangZ. LncRNA-GAS5 regulates PDCD4 expression and mediates myocardial infarction-induced cardiomyocytes apoptosis via targeting MiR-21. Cell Cycle19(11), 1363–1377 (2020).
  • Luo F , WuY , ZhuL , ZhangJ , LiuY , JiaW. Knockdown of HIF1A-AS2 suppresses TRIM44 to protect cardiomyocytes against hypoxia-induced injury. Cell Biol. Int.44(7), 1523–1534 (2020).
  • Sun W , LvJ , DuanLet al. Long noncoding RNA H19 promotes vascular remodeling by sponging let-7a to upregulate the expression of cyclin D1. Biochem. Biophys. Res. Commun.508(4), 1038–1042 (2019).
  • Zhang D , WangB , MaM , YuK , ZhangQ , ZhangX. lncRNA HOTAIR Protects Myocardial Infarction Rat by Sponging miR-519d-3p. J. Cardiovasc. Transl. Res.12(3), 171–183 (2019).
  • Liao B , DongS , XuZ , GaoF , ZhangS , LiangR. LncRNA Kcnq1ot1 renders cardiomyocytes apoptosis in acute myocardial infarction model by up-regulating Tead1. Life Sci.256, 117811 (2020).
  • Jiang C , ZhaoQ , WangCet al. Downregulation of Long Noncoding RNA LINC00261 Attenuates Myocardial Infarction through the miR-522-3p/Trinucleotide Repeat-Containing Gene 6a (TNRC6A) Axis. Cardiovasc. Ther.2021, 6628194 (2021).
  • Zheng HF , SunJ , ZouZY , ZhangY , HouGY. MiRNA-488-3p suppresses acute myocardial infarction-induced cardiomyocyte apoptosis via targeting ZNF791. Eur. Rev. Med. Pharmacol. Sci.23(11), 4932–4939 (2019).
  • Yan L , GuoN , CaoYet al. miRNA-145 inhibits myocardial infarction-induced apoptosis through autophagy via Akt3/mTOR signaling pathway in vitro and in vivo. Int. J. Mol. Med.42(3), 1537–1547 (2018).
  • Tan JK , MaXF , WangGN , JiangCR , GongHQ , LiuH. LncRNA MIAT knockdown alleviates oxygen-glucose deprivation-induced cardiomyocyte injury by regulating JAK2/STAT3 pathway via miR-181a-5p. J. Cardiol.78(6), 586–597 (2021).
  • Cao X , MaQ , WangBet al. Silencing long non-coding RNA MIAT ameliorates myocardial dysfunction induced by myocardial infarction via MIAT/miR-10a-5p/EGR2 axis. Aging (Albany NY)13(8), 11188–11206 (2021).
  • Huang S , ZhangL , SongJet al. Long noncoding RNA MALAT1 mediates cardiac fibrosis in experimental postinfarct myocardium mice model. J. Cell. Physiol.234(3), 2997–3006 (2019).
  • Li S , SunY , ZhongLet al. The suppression of ox-LDL-induced inflammatory cytokine release and apoptosis of HCAECs by long non-coding RNA-MALAT1 via regulating microRNA-155/SOCS1 pathway. Nutr. Metab. Cardiovasc. Dis.28(11), 1175–1187 (2018).
  • Zhu Y , YangT , DuanJ , MuN , ZhangT. MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging (Albany NY)11(4), 1089–1109 (2019).
  • Liu Z , LiuJ , WeiYet al. LncRNA MALAT1 prevents the protective effects of miR-125b-5p against acute myocardial infarction through positive regulation of NLRC5. Exp. Ther. Med.19(2), 990–998 (2020).
  • Zhu F , LiQ , LiJ , LiB , LiD. Long noncoding Mirt2 reduces apoptosis to alleviate myocardial infarction through regulation of the miR-764/PDK1 axis. Lab Invest.101(2), 165–176 (2021).
  • Bai Y , ZhangQ , SuY , PuZ , LiK. Modulation of the Proliferation/Apoptosis Balance of Vascular Smooth Muscle Cells in Atherosclerosis by lncRNA-MEG3 via Regulation of miR-26a/Smad1 Axis. Int. Heart J.60(2), 444–450 (2019).
  • Zhao X , WeiX , WangX , QiG. Long non-coding RNA NORAD regulates angiogenesis of human umbilical vein endothelial cells via miR-590-3p under hypoxic conditions. Mol. Med. Rep.21(6), 2560–2570 (2020).
  • Zhang M , WangX , YaoJ , QiuZ. Long non-coding RNA NEAT1 inhibits oxidative stress-induced vascular endothelial cell injury by activating the miR-181d-5p/CDKN3 axis. Artif. Cells Nanomed. Biotechnol.47(1), 3129–3137 (2019).
  • Zhang H , JiN , GongX , NiS , WangY. NEAT1/miR-140-3p/MAPK1 mediates the viability and survival of coronary endothelial cells and affects coronary atherosclerotic heart disease. Acta Biochim. Biophys. Sin. (Shanghai)52(9), 967–974 (2020).
  • Kong F , JinJ , LvXet al. Long noncoding RNA RMRP upregulation aggravates myocardial ischemia-reperfusion injury by sponging miR-206 to target ATG3 expression. Biomed. Pharmacother.109, 716–725 (2019).
  • Zhu B , LiuJ , ZhaoY , YanJ. lncRNA-SNHG14 Promotes Atherosclerosis by Regulating RORα Expression through Sponge miR-19a-3p. Comput. Math. Methods Med.2020, 3128053 (2020).
  • Ye F , ZhangJ , ZhangQ , ZhangJ , ChenC. Preliminary study on the mechanism of long noncoding RNA SENCR regulating the proliferation and migration of vascular smooth muscle cells. J. Cell. Physiol.235(12), 9635–9643 (2020).
  • Lin L , BaoJ. Long non-coding RNA THRIL is upregulated in coronary heart disease and binds to microRNA-424 to upregulate TXNIP in mice. Microvasc Res.138, 104215 (2021).
  • Zhou Y , LiT , ChenZ , HuangJ , QinZ , LiL. Overexpression of lncRNA TUG1 Alleviates NLRP3 Inflammasome-Mediated Cardiomyocyte Pyroptosis Through Targeting the miR-186-5p/XIAP Axis in Coronary Microembolization-Induced Myocardial Damage. Front. Immunol.12, 637598 (2021).
  • Wu L , TanG , LiXet al. LncRNA TONSL-AS1 participates in coronary artery disease by interacting with miR-197. Microvasc. Res.136, 104152 (2021).
  • Chen YQ , YangX , XuW , YanY , ChenXM , HuangZQ. Knockdown of lncRNA TTTY15 alleviates myocardial ischemia-reperfusion injury through the miR-374a-5p/FOXO1 axis. IUBMB Life73(1), 273–285 (2021).
  • Li P , LiY , ChenLet al. Long noncoding RNA uc003pxg.1 regulates endothelial cell proliferation and migration via miR-25-5p in coronary artery disease. Int. J. Mol. Med.48(2), (2021).
  • Mo L , JiangHB , TianGR , LuGJ. The proliferation and migration of atherosclerosis-related HVSMCs were inhibited by downregulation of lncRNA XIST via regulation of the miR-761/BMP9 axis. Kaohsiung J. Med. Sci.38(1), 18–29 (2021).
  • Zhang Y , LiuS , DingL , WangD , LiQ , LiD. Circ_0030235 knockdown protects H9c2 cells against OGD/R-induced injury via regulation of miR-526b. Peer J9, e11482 (2021).
  • Ji P , SongX , LvZ. Knockdown of circ_0004104 Alleviates Oxidized Low-Density Lipoprotein-Induced Vascular Endothelial Cell Injury by Regulating miR-100/TNFAIP8 Axis. J. Cardiovasc. Pharmacol. Ther.78(2), 269–279 (2021).
  • Zeng Z , XiaL , FanSet al. Circular RNA CircMAP3K5 Acts as a MicroRNA-22-3p Sponge to Promote Resolution of Intimal Hyperplasia Via TET2-Mediated Smooth Muscle Cell Differentiation. Circulation143(4), 354–371 (2021).
  • Lin DS , ZhangCY , LiL , YeGH , JiangLP , JinQ. Circ_ROBO2/miR-149 Axis Promotes the Proliferation and Migration of Human Aortic Smooth Muscle Cells by Activating NF-κB Signaling. Cytogenet. Genome Res.161(8-9), 414–424 (2021).
  • Mao YY , WangJQ , GuoXX , BiY , WangCX. Circ-SATB2 upregulates STIM1 expression and regulates vascular smooth muscle cell proliferation and differentiation through miR-939. Biochem. Biophys. Res. Commun.505(1), 119–125 (2018).
  • Lässer C , JangSC , LötvallJ. Subpopulations of extracellular vesicles and their therapeutic potential. Mol. Aspects Med.60, 1–14 (2018).
  • Babst M . MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr. Opin. Cell Biol.23(4), 452–457 (2011).
  • Nickerson DP , WestM , HenryR , OdorizziG. Regulators of Vps4 ATPase activity at endosomes differentially influence the size and rate of formation of intralumenal vesicles. Mol. Biol. Cell21(6), 1023–1032 (2010).
  • Epp N , RethmeierR , KrämerL , UngermannC. Membrane dynamics and fusion at late endosomes and vacuoles--Rab regulation, multisubunit tethering complexes and SNAREs. Eur. J. Cell Biol.90(9), 779–785 (2011).
  • Schorey JS , BhatnagarS. Exosome function: from tumor immunology to pathogen biology. Traffic.9(6), 871–881 (2008).
  • Van Nie lG , Porto-CarreiroI , SimoesS , RaposoG. Exosomes: a common pathway for a specialized function. J. Biochem.140(1), 13–21 (2006).
  • Sun Y , LiuXL , ZhangDet al. Platelet-Derived Exosomes Affect the Proliferation and Migration of Human Umbilical Vein Endothelial Cells Via miR-126. Curr. Vasc. Pharmacol.17(4), 379–387 (2019).
  • Mao Q , LiangXL , ZhangCL , PangYH , LuYX. LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Res. J.10(1), 393 (2019).
  • Wang Y , ZhaoR , LiuWet al. Exosomal circHIPK3 Released from Hypoxia-Pretreated Cardiomyocytes Regulates Oxidative Damage in Cardiac Microvascular Endothelial Cells via the miR-29a/IGF-1 Pathway. Oxid. Med. Cell. Longev.2019, 7954657 (2019).
  • Medina-Leyte DJ , Zepeda-GarcíaO , Domínguez-PérezM , González-GarridoA , Villarreal-MolinaT , Jacobo-AlbaveraL. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int. J. Mol. Sci.22(8), (2021).
  • Liang C , ZhangL , LianX , ZhuT , ZhangY , GuN. Circulating Exosomal SOCS2-AS1 Acts as a Novel Biomarker in Predicting the Diagnosis of Coronary Artery Disease. Biomed Res. Int.2020, 9182091 (2020).
  • Pan X , HeY , LingS , ChenZ , YanG. MiR-15a Functions as a Diagnostic Biomarker for Coronary Artery Disease. Clin. Lab.66(8), (2020).
  • Wang M , LiJ , CaiJet al. Overexpression of MicroRNA-16 Alleviates Atherosclerosis by Inhibition of Inflammatory Pathways. Biomed Res. Int.2020, 8504238 (2020).
  • Li X , HouL , ChengZ , ZhouS , QiJ , ChengJ. Overexpression of GAS5 inhibits abnormal activation of Wnt/β-catenin signaling pathway in myocardial tissues of rats with coronary artery disease. J. Cell. Physiol.234(7), 11348–11359 (2019).
  • Cao S , LiL , GengX , MaY , HuangX , KangX. The upregulation of miR-101 promotes vascular endothelial cell apoptosis and suppresses cell migration in acute coronary syndrome by targeting CDH5. Int. J. Exp. Pathol.12(9), 3320–3328 (2019).
  • Xiong G , JiangX , SongT. The overexpression of lncRNA H19 as a diagnostic marker for coronary artery disease. Rev. Assoc. Med. Bras. (1992)65(2), 110–117 (2019).
  • Yu H , TuYF , LiuHM , XuME. Diagnostic utility of circulating plasma microRNA-101a in severity of coronary heart disease. Ir. J. Med. Sci.190(4), 1391–1396 (2021).
  • Pan X , HeY , ChenZ , YanG , MaG. Circulating miR-130 is a potential bio signature for early prognosis of acute myocardial infarction. J. Thorac. Dis.12(12), 7320–7325 (2020).
  • Sun L , HeX , ZhangT , TaoG , WangX. Knockdown of lnc-KCNC3-3:1 Alleviates the Development of Atherosclerosis via Downregulation of JAK1/STAT3 Signaling Pathway. Front. Cardiovasc. Med.8, 701058 (2021).
  • Chen L , ZhengSY , YangCQ , MaBM , JiangD. MiR-155-5p inhibits the proliferation and migration of VSMCs and HUVECs in atherosclerosis by targeting AKT1. Eur. Rev. Med. Pharmacol. Sci.23(5), 2223–2233 (2019).
  • Zhang L , ZhouC , QinQ , LiuZ , LiP. LncRNA LEF1-AS1 regulates the migration and proliferation of vascular smooth muscle cells by targeting miR-544a/PTEN axis. J. Cell. Biochem.120(9), 14670–14678 (2019).
  • Jin C , GaoS , LiDet al. MiR-182-5p Inhibits the Proliferation of Vascular Smooth Muscle Cells Induced by ox-LDL Through Targeting PAPPA. Int. Heart J.61(4), 822–830 (2020).
  • Lv F , LiuL , FengQ , YangX. Long non-coding RNA MALAT1 and its target microRNA-125b associate with disease risk, severity, and major adverse cardiovascular event of coronary heart disease. J. Clin. Lab. Anal.35(4), e23593 (2021).
  • Zhang H , XueS , FengY , ShenJ , ZhaoJ. MicroRNA-24-3p inhibition prevents cell growth of vascular smooth muscle cells by targeting Bcl-2-like protein 11. Exp. Ther. Med.19(4), 2467–2474 (2020).
  • Zhang F , ChengN , DuJ , ZhangH , ZhangC. MicroRNA-200b-3p promotes endothelial cell apoptosis by targeting HDAC4 in atherosclerosis. BMC Cardiovasc. Disord.21(1), 172 (2021).
  • Li L , WuF , XieYet al. MiR-202-3p Inhibits Foam Cell Formation and is Associated with Coronary Heart Disease Risk in a Chinese Population. Int. Heart J.61(1), 153–159 (2020).
  • Zehtabian SH , AlibakhshiR , SeyedenaSY , RaiAR. Relationship between microRNA-206 plasma levels with the severity of coronary artery conflicts in patients with coronary artery disease. Bratisl. Lek. Listy120(8), 581–585 (2019).
  • Hu YW , GuoFX , XuYJet al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J. Clin. Investig.129(3), 1115–1128 (2019).
  • Huang R , ChenX , LongY , ChenR. MiR-31 promotes Th22 differentiation through targeting Bach2 in coronary heart disease. Biosci. Rep.39(9), (2019).
  • He X , LianZ , YangYet al. Long Non-coding RNA PEBP1P2 Suppresses Proliferative VSMCs Phenotypic Switching and Proliferation in Atherosclerosis. Mol. Ther. Nucleic Acids22, 84–98 (2020).
  • Quan W , HuPF , ZhaoX , LianhuaCG , BatuBR. Expression level of lncRNA PVT1 in serum of patients with coronary atherosclerosis disease and its clinical significance. Eur. Rev. Med. Pharmacol. Sci.24(11), 6333–6337 (2020).
  • Saliminejad K , KhorramKhorshid HR , SoleymaniFard S , GhaffariSH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol.234(5), 5451–5465 (2019).
  • Li Y , HuangJ , YanHet al. Protective effect of microRNA-381 against inflammatory damage of endothelial cells during coronary heart disease by targeting CXCR4. Mol. Med. Rep.21(3), 1439–1448 (2020).
  • Shen M , XuX , LiuXet al. Prospective Study on Plasma MicroRNA-4286 and Incident Acute Coronary Syndrome. J. Am. Heart Assoc.10(6), e018999 (2021).
  • Qiu H , ZhangY , ZhaoQ , JiangH , YanJ , LiuY. Platelet miR-587 may be Used as a Potential Biomarker for Diagnosis of Patients with Acute Coronary Syndrome. Clin. Lab.66(3), 10.7754 (2020).
  • Liu X , LiS , YangYet al. The lncRNA ANRIL regulates endothelial dysfunction by targeting the let-7b/TGF-βR1 signalling pathway. J. Cell. Physiol.236(3), 2058–2069 (2021).
  • Cho H , ShenGQ , WangXet al. Long noncoding RNA ANRIL regulates endothelial cell activities associated with coronary artery disease by up-regulating CLIP1, EZR, and LYVE1 genes. J. Biol. Chem.294(11), 3881–3898 (2019).
  • Vilades D , Martínez-CamblorP , Ferrero-GregoriAet al. Plasma circular RNA hsa_circ_0001445 and coronary artery disease: Performance as a biomarker. FASEB J.34(3), 4403–4414 (2020).
  • Tang TT , WangBQ. Clinical significance of lncRNA-AWPPH in coronary artery diseases. Eur. Rev. Med. Pharmacol. Sci.24(22), 11747–11751 (2020).
  • Ling H , GuoZ , ShiY , ZhangL , SongC. Serum Exosomal MicroRNA-21, MicroRNA-126, and PTEN Are Novel Biomarkers for Diagnosis of Acute Coronary Syndrome. Front. Physiol.654, (2020).
  • Ling H , GuoZ , DuSet al. Serum exosomal miR-122-5p is a new biomarker for both acute coronary syndrome and underlying coronary artery stenosis. J. Biomark.25(7), 539–547 (2020).
  • Chen M , KongC , ZhengZ , LiY. Identification of Biomarkers Associated with Septic Cardiomyopathy Based on Bioinformatics Analyses. J. Comput. Biol.27(1), 69–80 (2020).
  • Li P , YanX , XuGet al. A novel plasma lncRNA ENST00000416361 is upregulated in coronary artery disease and is related to inflammation and lipid metabolism. Mol. Med. Rep.21(6), 2375–2384 (2020).
  • Zhao X , JiaY , ChenH , YaoH , GuoW. Plasma-derived exosomal miR-183 associates with protein kinase activity and may serve as a novel predictive biomarker of myocardial ischemic injury. Exp. Ther. Med.18(1), 179–187 (2019).
  • Zeng X , LiZ , ZhuC , XuL , SunY , HanS. Research progress of nanocarriers for gene therapy targeting abnormal glucose and lipid metabolism in tumors. Drug Deliv.28(1), 2329–2347 (2021).
  • Chen Z , YanY , WuJ , QiC , LiuJ , WangJ. Expression level and diagnostic value of exosomal NEAT1/miR-204/MMP-9 in acute ST-segment elevation myocardial infarction. IUBMB life72(11), 2499–2507 (2020).
  • You G , LongX , SongFet al. Long Noncoding RNA EZR-AS1 Regulates the Proliferation, Migration, and Apoptosis of Human Venous Endothelial Cells via SMYD3. Biomed. Res. Int.2020, 6840234 (2020).
  • Lin B , ChenX , LuCet al. Loss of exosomal LncRNA HCG15 prevents acute myocardial ischemic injury through the NF-κB/p65 and p38 pathways. Cell Death Dis.12(11), 1007 (2021).
  • Guo F , ShaY , HuB , LiG. Corrigendum: Correlation of Long Non-coding RNA LncRNA-FA2H-2 With Inflammatory Markers in the Peripheral Blood of Patients With Coronary Heart Disease. Front. Cardiovasc. Med.8, 799848 (2021).
  • Sun L , ZhuW , ZhaoPet al. Long noncoding RNA UCA1 from hypoxia-conditioned hMSC-derived exosomes: a novel molecular target for cardioprotection through miR-873-5p/XIAP axis. Cell Death Dis.11(8), 696 (2020).
  • Xu H , ZhangX , YuK , ZhangG , ShiY , JiangY. Analysis on the Expression and Prognostic Value of LncRNA FAF in Patients with Coronary Heart Disease. Biomed Res. Int.2020, 9471329 (2020).
  • Wen Y , ChunY , LianZQet al. circRNA-0006896-miR1264-DNMT1 axis plays an important role in carotid plaque destabilization by regulating the behavior of endothelial cells in atherosclerosis. Mol. Med. Rep.23(5), 311 (2021).
  • Nakaya M , WatariK , TajimaMet al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J. Clin. Investig.127(1), 383–401 (2017).
  • Gallo A , TandonM , AlevizosI , IlleiGG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLOS ONE7(3), e30679 (2012).
  • Lawson C , VicencioJM , YellonDM , DavidsonSM. Microvesicles and exosomes: new players in metabolic and cardiovascular disease. J. Endocrinol.228(2), R57–71 (2016).
  • Ha D , YangN , NaditheV. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta pharmaceutica Sinica. B6(4), 287–296 (2016).
  • Liu J , WuJ , LiL , LiT , WangJ. The Role of Exosomal Non-Coding RNAs in Coronary Artery Disease. Front. Pharmacol.11, 603104 (2020).
  • Ghafouri-Fard S , GholipourM , TaheriM. The Emerging Role of Long Non-coding RNAs and Circular RNAs in Coronary Artery Disease. Front. Cardiovasc. Med.8, 632393 (2021).
  • JaquenodDe Giusti C , SantallaM , DasS. Exosomal non-coding RNAs (Exo-ncRNAs) in cardiovascular health. J. Mol. Cell. Cardiol.137, 143–151 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.