131
Views
0
CrossRef citations to date
0
Altmetric
Review

Gene Regulation in Animal miRNA Biogenesis

ORCID Icon, , , , , , , , , , , , , , , & show all
Pages 1197-1212 | Received 10 Jun 2022, Accepted 13 Oct 2022, Published online: 16 Nov 2022

References

  • Bartel D . microRNAs: genomics, biogenesis, mechanism, and function. Cell116(2), 281–297 (2004).
  • Gong H , VuGP , BaiYet al. A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLOS Pathog.7(9), e1002120(2011).
  • Lee RC , FeinbaumRL , AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75(5), 843–854 (1993).
  • Wightman B , HaI , RuvkunG. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75(5), 855–862 (1993).
  • Waddington CH . The epigenotype. 1942. Int. J. Epidemiol.41(1), 10–13 (2012).
  • Bird A . Perceptions of epigenetics. Nature447(7143), 396–398 (2007).
  • Xu Z , SandlerDP , TaylorJA. Blood DNA methylation and breast cancer: a prospective case–cohort analysis in the Sister Study. J. Natl Cancer Inst.112(1), 87–94 (2020).
  • Martins de Carvalho L , ChenWY , LasekAW. Epigenetic mechanisms underlying stress-induced depression. Int. Rev. Neurobiol.156, 87–126 (2021).
  • Kogo R , ShimamuraT , MimoriKet al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res.71(20), 6320–6326 (2011).
  • Chen R , GanQ , ZhaoSet al. DNA methylation of miR-138 regulates cell proliferation and EMT in cervical cancer by targeting EZH2. BMC Cancer22(1), 488 (2022).
  • Tammen SA , FrisoS , ChoiS-W. Epigenetics: the link between nature and nurture. Mol. Aspects Med.34(4), 753–764 (2013).
  • Boccaletto P , MachnickaMA , PurtaEet al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res.46(D1), D303–D307 (2018).
  • Jia G , FuY , ZhaoXet al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol.7(12), 885–887 (2011).
  • Willyard C . A new twist on epigenetics. Nature542(7642), 406–408 (2017).
  • Frye M , JaffreySR , PanT , RechaviG , SuzukiT. RNA modifications: what have we learned and where are we headed?Nat. Rev. Genet.17(6), 365–372 (2016).
  • Kozomara A , BirgaoanuM , Griffiths-JonesS. miRBase: from microRNA sequences to function. Nucleic Acids Res.47(D1), D155–D162 (2019).
  • Ozsolak F , PolingLL , WangZet al. Chromatin structure analyses identify miRNA promoters. Genes Dev.22(22), 3172–3183 (2008).
  • Monteys AM , SpenglerRM , WanJet al. Structure and activity of putative intronic miRNA promoters. RNA16(3), 495–505 (2010).
  • Dhir A , DhirS , ProudfootNJ , JoplingCL. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat. Struct. Mol. Biol.22(4), 319–327 (2015).
  • Altuvia Y , LandgrafP , LithwickGet al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res.33(8), 2697–2706 (2005).
  • Cai X , HagedornCH , CullenBR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA10(12), 1957–1966 (2004).
  • Nguyen TA , JoMH , ChoiYGet al. Functional anatomy of the human microprocessor. Cell161(6), 1374–1387 (2015).
  • Han J , LeeY , YeomK-Het al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell125(5), 887–901 (2006).
  • Yamazawa R , JikoC , ChoiSet al. Structural basis for selective binding of export cargoes by exportin-5. Structure26(10), 1393–1398.e2 (2018).
  • Kehlenbach RH , DickmannsA , KehlenbachA , GuanT , GeraceL. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J. Cell Biol.145(4), 645–657 (1999).
  • Song MS , RossiJJ. Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochem. J.474(10), 1603–1618 (2017).
  • MacRae IJ , ZhouK , LiFet al. Structural basis for double-stranded RNA processing by Dicer. Science311(5758), 195–198 (2006).
  • Wu J , YangJ , ChoWC , ZhengY. Argonaute proteins: structural features, functions and emerging roles. J. Adv. Res.24, 317–324 (2020).
  • Iwasaki S , KobayashiM , YodaMet al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol. Cell39(2), 292–299 (2010).
  • Johnston M , GeoffroyMC , SobalaA , HayR , HutvagnerG. HSP90 protein stabilizes unloaded Argonaute complexes and microscopic P-bodies in human cells. Mol. Biol. Cell21(9), 1462–1469 (2010).
  • Miyoshi T , TakeuchiA , SiomiH , SiomiMC. A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat. Struct. Mol. Biol.18(4), 516 (2011).
  • Iwasaki S , SasakiHM , SakaguchiY , SuzukiT , TadakumaH , TomariY. Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature521(7553), 533–536 (2015).
  • Schwarz DS , HutvagnerG , DuT , XuZ , AroninN , ZamorePD. Asymmetry in the assembly of the RNAi enzyme complex. Cell115(2), 199–208 (2003).
  • Saliminejad K , KhorshidHRK , FardSS , GhaffariS. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J. Cell. Physiol.234(5), 5451–5465 (2019).
  • Shukla G , SinghJ , BarikS. microRNAs: processing, maturation, target recognition and regulatory functions. Mol. Cell. Pharmacol.3(3), 83–92 (2011).
  • Brummer A , HausserJ. microRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. Bioessays36(6), 617–626 (2014).
  • Gerresheim GK , DunnesN , Nieder-RohrmannAet al. microRNA-122 target sites in the hepatitis C virus RNA NS5B coding region and 3′ untranslated region: function in replication and influence of RNA secondary structure. Cell. Mol. Life Sci.74(4), 747–760 (2017).
  • Biegel JM , HendersonE , CoxEMet al. Cellular DEAD-box RNA helicase DDX6 modulates interaction of miR-122 with the 5′ untranslated region of hepatitis C virus RNA. Virology507, 231–241 (2017).
  • Lima RT , BusaccaS , AlmeidaGM , GaudinoG , FennellDA , VasconcelosMH. microRNA regulation of core apoptosis pathways in cancer. Eur. J. Cancer47(2), 163–174 (2011).
  • Rao X , DiLeva G , LiMet al. microRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene30(9), 1082–1097 (2011).
  • Li Y , HuangJ , GuoM , ZuoX. microRNAs regulating signaling pathways: potential biomarkers in systemic sclerosis. Genomics Proteomics Bioinformatics13(4), 234–241 (2015).
  • Yu MM , XuY , PanLLet al. miR-10b downregulated by DNA methylation acts as a tumor suppressor in HPV-positive cervical cancer via targeting Tiam 1. Cell. Physiol. Biochem.51(4), 1763–1777 (2018).
  • Abisoye-Ogunniyan A , LinH , GhebremedhinAet al. Transcriptional repressor Kaiso promotes epithelial to mesenchymal transition and metastasis in prostate cancer through direct regulation of miR-200c. Cancer Lett.431, 1–10 (2018).
  • Liu K , XuC , LeiMet al. Structural basis for the ability of MBD domains to bind methyl-CG and TG sites in DNA. J. Biol. Chem.293(19), 7344–7354 (2018).
  • Filion GJP , ZheniloS , SalozhinS , YamadaD , ProkhortchoukE , DefossezP-A. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol. Cell. Biol.26(1), 169–181 (2006).
  • Bell RE , GolanT , SheinboimDet al. Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Res.26(5), 601–611 (2016).
  • Zhang JK , LiYS , ZhangCD , DaiDQ. Upregulation of CRKL by microRNA-335 methylation is associated with poor prognosis in gastric cancer. Cancer Cell Int.17, 28 (2017).
  • Fu Q , ShiH , ChenC. Roles of bta-miR-29b promoter regions DNA methylation in regulating miR-29b expression and bovine viral diarrhea virus NADL replication in MDBK cells. Arch. Virol.162(2), 401–408 (2017).
  • Periyasamy P , ThangarajA , GuoML , HuGK , CallenS , BuchS. Epigenetic promoter DNA methylation of miR-124 promotes HIV-1 Tat-mediated microglial activation via MECP2-STAT3 axis. J. Neurosci.38(23), S367–S383 (2018).
  • Glaich O , ParikhS , BellREet al. DNA methylation directs microRNA biogenesis in mammalian cells. Nat. Commun.10(1), 5657 (2019).
  • Shukla S , KavakE , GregoryMet al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature479(7371), 74–79 (2011).
  • Maunakea AK , ChepelevI , CuiK , ZhaoK. Intragenic DNA methylation modulates alternative splicing by recruiting MECP2 to promote exon recognition. Cell Res.23(11), 1256–1269 (2013).
  • Luger K , MäderAW , RichmondRK , SargentDF , RichmondTJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature389(6648), 251–260 (1997).
  • Oudet P , Gross-BellardM , ChambonP. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell4(4), 281–300 (1975).
  • Allan J , HartmanPG , Crane-RobinsonC , AvilesFX. The structure of histone H1 and its location in chromatin. Nature288(5792), 675–679 (1980).
  • Greer EL , ShiY. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet.13(5), 343–357 (2012).
  • Shogren-Knaak M , IshiiH , SunJM , PazinMJ , DavieJR , PetersonCL. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science311(5762), 844–847 (2006).
  • Vettese-Dadey M , GrantPA , HebbesTR , Crane-RobinsonC , AllisCD , WorkmanJL. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J.15(10), 2508–2518 (1996).
  • Huang G , ZhangG , YuZ. Computational prediction and analysis of histone H3k27me1-associated miRNAs. Biochim. Biophys. Acta Proteins Proteom.1869(1), 140539 (2021).
  • Jing PY , ZhaoN , YeMXet al. Protein arginine methyltransferase 5 promotes lung cancer metastasis via the epigenetic regulation of miR-99 family/FGFR3 signaling. Cancer Lett.427, 38–48 (2018).
  • Du C , LvCH , FengY , YuSW. Activation of the KDM5A/miRNA-495/YTHDF2/m6A-MOB3B axis facilitates prostate cancer progression. J. Exp. Clin. Cancer Res.39(1), (2020).
  • Cai H , AnY , ChenXet al. Epigenetic inhibition of miR-663b by long non-coding RNA HOTAIR promotes pancreatic cancer cell proliferation via upregulation of insulin-like growth factor 2. Oncotarget7(52), 86857–86870 (2016).
  • Ding S , ZhangQ , LuoSet al. BCL-6 suppresses miR-142-3p/5p expression in SLE CD4(+) T cells by modulating histone methylation and acetylation of the miR-142 promoter. Cell. Mol. Immunol.17(5), 474–482 (2020).
  • Zhou MR , ZengJP , WangXMet al. Histone demethylase RBP2 decreases miR-21 in blast crisis of chronic myeloid leukemia. Oncotarget6(2), 1249–1261 (2015).
  • Karkhanis V , AlinariL , OzerHGet al. Protein arginine methyltransferase 5 represses tumor suppressor miRNAs that downregulate CYCLIN D1 and c-MYC expression in aggressive B-cell lymphoma. J. Biol. Chem.295(5), 1165–1180 (2020).
  • Zhang Q , XuL , WangJJet al. KDM5C expedites lung cancer growth and metastasis through epigenetic regulation of microRNA-133a. Onco Targets Ther.14, 1187–1204 (2021).
  • Zhang S , ChenP , HuangZAet al. Sirt7 promotes gastric cancer growth and inhibits apoptosis by epigenetically inhibiting miR-34a. Sci. Rep.5, 9787 (2015).
  • Wu R , ZengJ , YuanJet al. microRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J. Clin. Investig.128(6), 2551–2568 (2018).
  • Zhu J , HanS. Histone deacetylase 10 exerts anti-tumor effects on cervical cancer via a novel microRNA-223/TXNIP/Wnt/beta-catenin pathway. IUBMB Life doi:10.1002/iub.2448 (2021) ( Epub ahead of print).
  • Peng XL , ChangH , GuYYet al. 3,6-dihydroxyflavone suppresses breast carcinogenesis by epigenetically regulating miR-34a and miR-21. Cancer Prev. Res. (Phila.)8(6), 509–517 (2015).
  • Zhu H , WangC. HDAC2-mediated proliferation of trophoblast cells requires the miR-183/FOXA1/IL-8 signaling pathway. J. Cell. Physiol.236(4), 2544–2558 (2021).
  • Tessarz P , KouzaridesT. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol.15(11), 703–708 (2014).
  • Handa H , HashimotoA , HashimotoS , SuginoH , OikawaT , SabeH. Epithelial-specific histone modification of the miR-96/182 locus targeting AMAP1 mRNA predisposes p53 to suppress cell invasion in epithelial cells. Cell Commun. Signal.16(1), 94 (2018).
  • Li Y , LiH , ZhouL. EZH2-mediated H3K27me3 inhibits ACE2 expression. Biochem. Biophys. Res. Commun.526(4), 947–952 (2020).
  • Yu J , WangL , PeiPet al. Reduced H3K27me3 leads to abnormal Hox gene expression in neural tube defects. Epigenetics Chromatin12(1), 76 (2019).
  • Zhang B , ZhengH , HuangBet al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature537(7621), 553–557 (2016).
  • Clouaire T , WebbS , SkenePet al. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev.26(15), 1714–1728 (2012).
  • Hu D , GaoX , CaoKet al. Not all H3K4 methylations are created equal: Mll2/COMPASS dependency in primordial germ cell specification. Mol. Cell65(3), 460–475.e6 (2017).
  • Douillet D , SzeCC , RyanCet al. Uncoupling histone H3K4 trimethylation from developmental gene expression via an equilibrium of COMPASS, Polycomb and DNA methylation. Nat. Genet.52(6), 615–625 (2020).
  • Tate CM , LeeJH , SkalnikDG. CXXC finger protein 1 restricts the Setd1A histone H3K4 methyltransferase complex to euchromatin. FEBS J.277(1), 210–223 (2010).
  • Carlone DL , LeeJH , YoungSRet al. Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein. Mol. Cell. Biol.25(12), 4881–4891 (2005).
  • Ning X , ShiZ , LiuXet al. DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett.359(2), 198–205 (2015).
  • Hu Y , WuF , LiuY , ZhaoQ , TangH. DNMT1 recruited by EZH2-mediated silencing of miR-484 contributes to the malignancy of cervical cancer cells through MMP14 and HNF1A. Clin. Epigenetics11(1), 186 (2019).
  • Willyard C . An epigenetics gold rush: new controls for gene expression. Nature542(7642), 406–408 (2017).
  • Xhemalce B , RobsonSC , KouzaridesT. Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell151(2), 278–288 (2012).
  • Pandolfini L , BarbieriI , BannisterAJet al. METTL1 promotes let-7 microRNA processing via m7G methylation. Mol. Cell74(6), 1278–1290.e9 (2019).
  • Zhao LY , SongJ , LiuY , SongCX , YiC. Mapping the epigenetic modifications of DNA and RNA. Protein Cell11(11), 792–808 (2020).
  • Berulava T , RahmannS , RademacherK , Klein-HitpassL , HorsthemkeB. N6-adenosine methylation in miRNAs. PLOS ONE10(2), e0118438 (2015).
  • Alarcón CR , LeeH , GoodarziH , HalbergN , TavazoieSF. N6-methyladenosine marks primary microRNAs for processing. Nature519(7544), 482–485 (2015).
  • Alarcon CR , GoodarziH , LeeH , LiuX , TavazoieS , TavazoieSF. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell162(6), 1299–1308 (2015).
  • Wang H , DengQ , LvZet al. N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol. Cancer18(1), 181 (2019).
  • Han J , WangJ-Z , YangXet al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol. Cancer18(1), 110 (2019).
  • Zhang J , BaiR , LiMet al. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat. Commun.10(1), 1858 (2019).
  • Xu K , MoY , LiDet al. N-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia–reperfusion injury. Ther. Adv. Chronic Dis.11, 2040622320916024 (2020).
  • Wang P , WangZW , ZhangM , WuQ , ShiF , YuanS. KIAA1429 and ALKBH5 oppositely influence aortic dissection progression via regulating the maturation of pri-miR-143-3p in an m6A-dependent manner. Front. Cell Dev. Biol.9, 668377 (2021).
  • Fu Y , DominissiniD , RechaviG , HeC. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet.15(5), 293–306 (2014).
  • Wang X , LuZ , GomezAet al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature505(7481), 117–120 (2014).
  • Chaulk SG , ThedeGL , KentOAet al. Role of pri-miRNA tertiary structure in miR-17∼92 miRNA biogenesis. RNA Biol.8(6), 1105–1114 (2011).
  • Zhao H , LiJ , YanX , BianX. lncRNA MAFG-AS1 suppresses the maturation of miR-34a to promote glioblastoma cell proliferation. Cancer Manag. Res.13, 3493–3501 (2021).
  • Han K , WangFW , CaoCHet al. circLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. Mol. Cancer19(1), 60 (2020).
  • Yu Y , Nangia-MakkerP , FarhanaL , MajumdarAPN. A novel mechanism of lncRNA and miRNA interaction: CCAT2 regulates miR-145 expression by suppressing its maturation process in colon cancer cells. Mol. Cancer16(1), 155 (2017).
  • Liz J , PortelaA , SolerMet al. Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Mol. Cell55(1), 138–147 (2014).
  • Tian T , LvXB , PanGKet al. Long noncoding RNA MPRL promotes mitochondrial fission and cisplatin chemosensitivity via disruption of pre-miRNA processing. Clin. Cancer Res.25(12), 3673–3688 (2019).
  • Li YZ , SongY , WangZH , ZhangZY , LuMM , WangYX. Long non-coding RNA LINC01787 drives breast cancer progression via disrupting miR-125b generation. Front. Oncol.5(9), 1140 (2019).
  • Ahn J-H , LeeH-S , LeeJ-Set al. nc886 is induced by TGF-β and suppresses the microRNA pathway in ovarian cancer. Nat. Commun.9(1), 1166 (2018).
  • Tang R , LiL , ZhuDet al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res.22(3), 504–515 (2012).
  • Zisoulis DG , KaiZS , ChangRK , PasquinelliAE. Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature486(7404), 541–544 (2012).
  • Wang D , SunX , WeiYet al. Nuclear miR-122 directly regulates the biogenesis of cell survival oncomiR miR-21 at the posttranscriptional level. Nucleic Acids Res.46(4), 2012–2029 (2018).
  • Földes-Papp Z , KönigK , StudierHet al. Trafficking of mature miRNA-122 into the nucleus of live liver cells. Curr. Pharm. Biotechnol.10(6), 569–578 (2009).
  • Tseng C-F , ChenL-T , WangH-D , LiuY-H , ShiahS-G. Transcriptional suppression of Dicer by HOXB-AS3/EZH2 complex dictates sorafenib resistance and cancer stemness. Cancer Sci.113(5), 1601–1612 (2022).
  • Leaderer D , HoffmanAE , ZhengTet al. Genetic and epigenetic association studies suggest a role of microRNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. Int. J. Mol. Epidemiol. Genet.2(1), 9–18 (2011).
  • Hoffend NC , MagnerWJ , TomasiTB. The epigenetic regulation of Dicer and microRNA biogenesis by panobinostat. Epigenetics12(2), 105–112 (2017).
  • van den Beucken T , KochE , ChuKet al. Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat. Commun.5, 5203 (2014).
  • Peng F , XuJ , CuiBet al. Oncogenic AURKA-enhanced N(6)-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Res.31(3), 345–361 (2021).
  • Min KW , ZealyRW , DavilaSet al. Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability. Aging Cell17(3), e12753 (2018).
  • Dong JS , WuB , ChenXH. circPSMC3 inhibits prostate cancer cell proliferation by downregulating DGCR8. Eur. Rev. Med. Pharmacol. Sci.24(5), 2264–2270 (2020).
  • Frixa T , SacconiA , CioceMet al. microRNA-128-3p-mediated depletion of Drosha promotes lung cancer cell migration. Carcinogenesis39(2), 293–304 (2018).
  • Martello G , RosatoA , FerrariFet al. A microRNA targeting Dicer for metastasis control. Cell141(7), 1195–1207 (2010).
  • Paraskevopoulou MD , GeorgakilasG , KostoulasNet al. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res.41(Web Server issue), W169–W173 (2013).
  • Mechtler P , JohnsonS , SlabodkinH , CohanimAB , BrodskyL , KandelES. The evidence for a microRNA product of human DROSHA gene. RNA Biol.14(11), 1508–1513 (2017).
  • Bosia C , OsellaM , BaroudiME , CoraD , CaselleM. Gene autoregulation via intronic microRNAs and its functions. BMC Syst. Biol.6, 131 (2012).
  • Redis RS , VelaLE , LuWet al. Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2. Mol. Cell61(4), 520–534 (2016).
  • Chakraborty C , SharmaAR , SharmaG , DossCGP , LeeSS. Therapeutic miRNA and siRNA: moving from bench to clinic as next-generation medicine. Mol. Ther. Nucleic Acids8, 132–143 (2017).
  • Watts JK , CoreyDR. Silencing disease genes in the laboratory and the clinic. J. Plant Pathol.226(2), 365–379 (2012).
  • Baretti M , AzadNS. The role of epigenetic therapies in colorectal cancer. Curr. Probl. Cancer42(6), 530–547 (2018).
  • Lujambio A , RoperoS , BallestarEet al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res.67(4), 1424–1429 (2007).
  • Scott GK , MattieMD , BergerCE , BenzSC , BenzCC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res.66(3), 1277–1281 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.